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ABSTRACT 

Song, Wei. Ph.D., Purdue University, August 2011.  Dynamic Model Updating with Ap-

plications in Structural and Damping Systems: from Linear to Nonlinear, from Off-line to 

Real-time.  Major Professor:  Shirley Dyke. 

Dynamic model updating is a technique to investigate the status of a structure by using 

dynamic information identified from structure vibrational data. By satisfying certain cri-

teria based on modal information of the structure, the dynamic properties of a mathemati-

cal model can be updated to match those from the measurements of a physical specimen. 

Based on the purposes of model updating, the updating criteria, the complexity of the 

structural models to be updated, and the types of dynamic information sought, model up-

dating methods can be categorized into the following: i) linear finite element (FE) model 

updating using modal information, ii) nonlinear FE model updating using modal informa-

tion based on a linearized model under certain operation conditions, zero loading point in 

this study; and iii) nonlinear hysteretic model using time-series data for real-time updat-

ing. 

The focus of this dissertation is to develop the above three different updating methods 

and demonstrate their effectiveness in corresponding updating applications. Both linear 

and nonlinear hysteretic models are considered in the study. Numerical simulations are 

carried out for all the three model updating techniques to demonstrate the performance 

and efficacy of the updating techniques developed. Two sets of experiments are con-

ducted, one set contains real-time updating tests on  magnetorheological (MR) dampers 

and another set contains quasistatic cyclic tests and real-time updating tests using shake 

table on a steel shear building. The real-time feature is achieved by the latest high per-
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formance host-target environment enabled by xPC Target
TM

, a product from MATH-

WORKS
®
. In addition to the development of the model updating techniques, a power 

supply unit model and a nonlinear hysteresis model modified from Bouc-Wen model are 

proposed and successfully applied in the experimental study. The study conducted herein 

demonstrates that the model updating techniques developed can be effectively applied to 

various updating scenarios. The developed nonlinear hysteretic model updating technique 

is able to achieve “hard” real-time functionality, which can provide the most up-to-date 

information of the structural model. This technique also requires minimal data-buffer, 

and has potential to have a significant impact on nonlinear structural control applications.  
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CHAPTER 1 

INTRODUCTION 

According to a US Congressional Budget Office (CBO) study (CBO, Nov. 2010), even 

with a 6% decline from 2003 to 2007, the total public spending (by all levels) for trans-

portation and water infrastructure in Fiscal Year 2007 still amounted to $356 billion (of 

2009 dollars), or 2.4 percent of the nation‟s economic output as measured by its gross 

domestic product (GDP). These figures continue to grow. In 2009, the US federal gov-

ernment alone spent $87 billion on the transportation and water infrastructure, 

representing the first annual increase of federal outlays for such infrastructure since 2002. 

With the American Recovery and Reinvestment Act of 2009 (ARRA), it is expected that 

cumulative spending for such infrastructure under ARRA will total $54 billion by 2013 

and $61 billion by 2020. Along with the astronomical sums of public expenditures on in-

frastructure, this country continues to suffer staggering consequences from infrastructure 

decay. According to a white paper prepared by National Institute of Standards and Tech-

nology (NIST) - Technology Innovation Program (NIST-TIP, November 5, 2009), the 

nation has 1 000 000 miles of water mains, 600 000 bridges, and 4 000 000 miles of pub-

lic roadway, and they are aging quickly. These figures imply a significant operation and 

maintenance cost. In 2007, the public spending on operation and maintenance for trans-

portation and water infrastructure amounted to $196 billion, which is more than the real 

capital expenditures of that year on such infrastructure (CBO, Nov. 2010). However, this 

major investment still did not improve the serious deficiencies in the current infrastruc-

ture system. In 2009, ASCE Report Card for America‟s Infrastructure (ASCE, March 25, 

2009) gave a “D” grade for the overall infrastructure system (by ASCE grade scale, a “C” 

is mediocre, not average), and estimated a cost of $ 2.2 trillion needs to be invested over 

5 years to bring the condition to “B” --- a good condition. This is an increase of more 
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than half a trillion dollars since the 2005 Report Card(ASCE, 2005). Current spending 

amounts to only about half of the needed investment, which means the government must 

invest an additional $1.1 trillion over the next five years. In the subcategory --- Bridge, 

which earned a “C”, the advisory council explains that, more than 26% --- more than one 

in four --- of the nation‟s bridges are either structurally deficient or functionally obsolete; 

there have been no substantial improvements in bridge condition since the last report card 

(ASCE, 2005), keeping the grade at a “C” for 2009. This implies there are about 150 000 

bridges in the need of large scale inspection and repair. 

No one wants to see a repeat of the horror of the collapse of I-35 Bridge. With the signif-

icant amount of financial spending involved and the enormous size of the infrastructure 

system, improving the infrastructure inspection and repairing process is raised as a na-

tional task. The National Academy of Engineering (NAE) has identified the restoration 

and improvement of urban infrastructure as one of their fourteen grand challenges in en-

gineering (NAE, 2008). During the maintenance of any infrastructure system, public safe-

ty professionals and engineers have to inspect the condition/performance of the system, 

and determine the defective or deteriorating components. Based on the inspection results, 

a prioritized maintenance schedule along with a repair plan is issued. However, the cur-

rent state-of-the-practice for routine maintenance of bridges and roads is typically visual 

inspection (NIST-TIP, November 5, 2009). This process is time consuming and expen-

sive due to the demand for skilled operators, which in turn reduces the frequency of the 

inspection process and leaves large blanks in vulnerability assessment cycles. 

With recent advances in sensing technologies and materials science, innovative structural 

health monitoring (SHM) systems have been developed. Techniques to detect damage in 

civil structures using vibrational data have been under development for about two dec-

ades, and are currently a topic of widespread interest in the international community. 

Several workshops and special journal issues have focused on this technology (Bernal & 

Beck, 2004);(Farrar, et al., July, 2003); (Wu & Abe, 2003). Dynamics-based SHM tech-

niques are a promising complement to the current visual or localized nondestructive eval-

uation methods, such as acoustic or ultrasonic methods, which require that the vicinity of 
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the damage locations be known a priori. These techniques are designed to detect the lo-

cation and severity of the structural damage using changes in its dynamic properties (ei-

genfrequencies, mode shapes and transfer functions) (Doebling, Farrar, & Prime, 1998); 

(Farrar, et al., July, 2003). These techniques, with the advent of new sensing technologies 

that facilitate spatially dense and high quality data from in situ civil structures, will revo-

lutionize the way in which engineers inspect structures and prioritize repair and replace-

ment needs. 

As one primary SHM tool, model updating has attracted more and more attention over 

the years (Friswell & Mottershead, 1995). As pointed out by (Farrar & Lieven, 2007), the 

applications of damage prognosis lie in almost all engineering structures and mechanical 

systems, including defense hardware, civil infrastructure, industrial equipments, and aer-

ospace systems. This conclusion is due to its potential for life safety and economic bene-

fits. One of the essential component of damage prognosis is to utilize current information 

collected in SHM to build and verify a mathematical model for future estimates. And this 

task is exactly the goal of model updating. A more recent State-of-the-Art report (Catbas, 

Kijewski-Correa, & Aktan, 2011) also points out that, calibrated analytical models can 

provide information essential to advance the design state-of-the-art and aid the decision-

making and risk management process. In recent years, the application of linear FE model 

updating in SHM has been extensively studied and well documented (Mottershead & 

Friswell, 1993). These methods are typically used for one of two reasons: FE model tun-

ing or damage detection. In the former application the goal is to update a model to 

represent the real structural behavior and predict future behavior. In the second applica-

tion, the goal is to identify the discrepancies in the structure‟s dynamic behavior before 

and after damage, and locate and quantify the damage based on those discrepancies. The 

generality in its usage indicates that FE model updating techniques can be used not just in 

damage or deterioration detection, but also in retrofitting or repairing process, as long as 

the change in parameterized structure model can be detected and recalibrated by the up-

dating procedure. Similar techniques are used in both applications. However, model tun-

ing is often performed prior to any structural damage taking place.  Herein, the focus is 

on model updating for damage detection and quantification, and therefore it is assumed 
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that the model to be updated after damage has potentially occurred has been calibrated 

through model tuning. 

The above model updating techniques with linear FE models have been successfully ap-

plied and summarized (Friswell & Mottershead, 1995); (Catbas, Kijewski-Correa, & 

Aktan, 2011). Although these models appear to be adequate for quantifying and locating 

damage when significant damage is induced in the structure, they are not sufficient for 

determining future performance of the structure. Evaluating degradation in the capacity 

of a structure requires construction of updated nonlinear finite element (FE) models. It is 

necessary to distinguish between the various types of damage to have a true understand-

ing of the condition of the structure, and this may only be possible through proper updat-

ing of a reliable, high-fidelity nonlinear finite element model.  

In this dissertation, both linear and nonlinear FE model updating strategies have been 

studied. A new approach is proposed as an efficient linear model updating procedure for 

higher order problems, in which the main purpose of the updating is to identify the loca-

tion and severity of the stiffness changes. When the evaluation of the post-damage per-

formance of the structure is of concern, a systematic way to perform damage detection 

and, more importantly, model updating for prediction, is also proposed. In both FE model 

updating strategies, the required input is the modal information (eigenfrequencies and 

mode shapes) obtained during low-level ambient vibration tests. 

With modern data acquisition (DAQ) system and communication technologies, the raw 

data collected in the field can be transmitted to the end user at station in real-time by a 

cabled DSL connection (Masri, Sheng, Caffrey, Nigbor, Wahbeh, & Abdel-Ghaffar, 

2004). Wireless sensor networks (WSNs) have also been applied to provide real-time 

feedback of the health of the structures (Lynch, 2004). Utilizing the similar SHM plat-

form, the aforementioned linear and nonlinear FE model updating strategies can be im-

plemented in an autonomous manner to provide online structural health information. 

However, the community demands more compact and fast SHM systems, for field dep-

loyment, as well as real-time performance for integrated data logging, structural perfor-

mance assessment and vulnerability evaluation in the impending hazards. Real-time 
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model updating can provide a solution to this demand. It can help to prioritize the sche-

dule for future repair and replacement process, and more importantly, can acquire infor-

mation for emergency notification in the case of disastrous events. This realization high-

lights another subject of this study --- real-time nonlinear model updating. 

Another goal of this dissertation is the development of the model updating methods for 

nonlinear hysteretic structural models. A recently developed state observer technique, the 

unscented Kalman filter (UKF) was proposed by Julier (Julier, Uhlrnann, & Durrant-

Whyte, June 1995);(Julier, Uhlmann, & Durrant-Whyte, 2000) and further improved and 

documented in (Julier S. , 2002 );(Wan & van der Merwe, 2001). It has the advantage of 

not requiring the calculation of the Jacobian. The UKF has outperformed other state esti-

mation techniques (such as Extended Kalman filter and least-squared filter) in the appli-

cation of nonlinear system state estimation, especially in highly nonlinear systems which 

contain singular points where the Jacobian fails to exist. In this dissertation, with the aid 

of recent developments in real-time computing and data acquisition systems, UKF is be-

ing implemented on the xPC Target
TM

, a host-target real-time system developed by 

MATHWORKS
®
 (MATHWORKS, 2010). This effort makes hard real-time state estima-

tion possible for nonlinear hysteretic systems, which implies its potential in model updat-

ing for structures in disastrous events. 

In addition to the development of model updating techniques, UKF is chosen for applica-

tion to perform model updating experiments of a magnetorheological (MR) damper and a 

steel shear building structure. The main purpose is to demonstrate the effectiveness of 

UKF as a real-time model updating method for structures and energy dissipative devices 

that exhibit practical engineering nonlinearities. During the experiments, the real-time 

performance of the implemented UKF algorithm has also been examined. And to the best 

of the author‟s knowledge, this is the first time such a model updating (or system identifi-

cation for the purpose of merely identifying the model parameters) experiment has been 

performed in a hard real-time environment. 



6 

 

1.1 Scope and Objectives 

Many SHM techniques have been developed for and applied to the infrastructure moni-

toring systems (Catbas, Kijewski-Correa, & Aktan, 2011), such as operational modal 

analysis using ambient vibration data, and optic fiber sensor to monitor the strain infor-

mation and ultrasonic sensor to detect flaws in a vicinity of problematic area. With the 

latest advances of sensing technology, more and more sensing units are emerging and be-

ing applied for SHM, such as laser Doppler vibrometer (LDVM) (Siringoringo & Fujino, 

2006), global positioning system (GPS) (Kijewski-Correa, Kareem, & Kochly, 2006), 

electro-mechanical impedance (EMI) technique (Park, Sohn, Farrar, & Inman, 2003), and 

different types of fiber optic sensors (Glisic & Inaudi, 2007). 

The model updating techniques that are proposed and developed in this dissertation util-

ize the vibration information, in the form of either the modal information obtained after a 

system identification process, or the raw vibration data  (e.g. acceleration, or displace-

ment) streamed directly from a data acquisition (DAQ) system. Based on the model up-

dating technique chosen, the corresponding requirements and objectives are listed below. 

1. Linear FE model updating method assumes the structure behaves linearly and the 

modal information can be obtained using modal identification algorithm, prefera-

bly an operational modal analysis which requires no interruption in the  regular 

operation of the structure in service. Some popular operational modal analysis al-

gorithms (Giraldo, Song, Dyke, & Caicedo, 2009) are the Natural Excitation 

Technique combined with Eigensystem Realization Algorithm (NExT-ERA) and 

data correlation (ERA/DC) (Juang & Pappa, Eigensystem Realization Algorithm 

for Modal Parameter Identification and Model Reduction, 1985);(Juang, Applied 

System Identification, 1994), the Frequency Domain Decomposition (FDD) 

(Brincker, Zhang, & Andersen, 2001), the Stochastic Subspace Identification (SSI) 

(Van Overchee & De Moor, 1996), and Autoregressive and Moving Average 

Vector (ARMAv) (Andersen, 1997). The operational modal analysis requires the 

excitation to the structure are broadband random inputs, and the introduced ener-

gy level is low so that the structure behaves linearly during the course of modal 
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analysis. In lab conditions, hammer testing can also be applied to extract the mod-

al information using impulse responses. The purpose of the linear FE model up-

dating herein is to capture the linear stiffness reduction in terms of its location and 

severity. 

2. The proposed nonlinear FE model updating method needs to acquire modal in-

formation near the zero-load crossing points. The basic assumptions on the modal 

analysis are the same as the above linear FE model updating method. The differ-

ence between the two is that, in this case, the structure model to be updated is 

nonlinear, but behaves linearly near the zero-load crossing points with low-level 

excitations. The purpose is, again, to identify the reduction of tangent stiffness at 

zero-load crossing points. With the reduction of the tangent stiffness identified, 

certain control variables (historical variables in section 2.2) in the nonlinear mod-

el can be updated, and hence the nonlinear model is updated. 

3. The real-time nonlinear model updating method does not have any general con-

straint on the input excitation. The excitation can be a sinusoidal input, band-

limited random input, or earthquake input. However, a specific constraint may be 

applied depending on if the updated model can capture the structural nonlinearity 

under such input. Consider, for instance, the MR damper experiment described in 

CHAPTER 6. If the input displacement has a frequency lower than certain thre-

shold (2 Hz in this study), the nonlinear behavior observed from the damper can 

no longer be described by the updated model. Therefore, the requirement of  the 

excitation is determined by specific application. The purpose is to obtain the non-

linear model with satisfactory accuracy in real-time. 

It is worth pointing out that, in both the linear and nonlinear FE model updating methods, 

the damage is generally defined as reduction in linear stiffness. One of the reasons for 

this assumption is that the stiffness can be directly identified by the modal information 

that these two methods rely on. Nonetheless, the real-time nonlinear model updating me-

thod is capable of identifying the nonlinear mathematical model without an explicit defi-

nition of damage as in the FE model updating methods.  
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1.2 Literature Review 

In this dissertation, three dynamic model updating techniques are proposed based on the 

different assumptions and updating techniques involved. The models to be updated range 

from linear to nonlinear, and the execution environment ranges from off-line to real-time. 

Each model updating method has distinctive assumptions and associated ranges of appli-

cation. Among which, many linear FE model updating methods have been widely applied 

in various engineering applications (Friswell & Mottershead, 1995); (Catbas, Kijewski-

Correa, & Aktan, 2011), but research on nonlinear FE model updating method is still 

largely missing in the literature. Nonlinear real-time model updating using observer 

theory is a promising method. However the effort involved in the implementation is sig-

nificantly larger than the other two. In the remaining part of this section, previously do-

cumented research achievement and their linkage to this dissertation will be summarized. 

1.2.1 Linear FE Model Updating Method 

Many SHM techniques utilize changes in the natural frequencies as global information to 

detect the existence of damage. However, as pointed out by many researchers (Cawley & 

Adams, 1979), in general, the change of natural frequencies is not adequate to uniquely 

represent the magnitude of damage. (Salawu, 1997) explained that changes in the natural 

frequencies do not provide spatial information. Therefore, mode shapes should be 

brought into the procedure to provide more complete information and facilitate both loca-

lization and quantification. (Pandey, Biswas, & Samman, Damage Detection from 

Changes in Curvature Mode Shapes, 1991) introduced mode shape curvature, which is 

more sensitive than the other ways in indicating the damage locations, such as applying 

Modal Assurance Criterion (MAC) (Wolff & Richardson, 1989) and Co-ordinate Modal 

Assurance Criterion (COMAC) (Lieven & Ewins, 1988). The use of changes in modal 

strain energy, which is closely related to mode shape curvature when the structural beha-

vior is flexural dominant, has also been reported (Cornwell, Doebling, & Farrar, 1997). 

However, these methods may suffer from large errors due to uncertainties in the mea-

surements. Additionally, to obtain good results the structure should be a beam or plate 

whose behavior is dominated by flexure. The use of modal flexibility does appear to offer 
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a proper measure for damage identification considering both its experimental attainability 

and its sensitivity to structural damage (Aktan, Lee, Chuntavan, & Aksel, 1994);(Toksoy 

& Aktan, 1994); (Pandey & Biswas, 1994); (Pandey & Biswas, 1995);(Bernal, Extracting 

Flexibility Matrices from State-space Realizations, 2000); (Jaishi & Ren, 2006). 

Although damage is inherently a nonlinear phenomenon, low-level vibrations are typical-

ly used to identify the dynamic characteristics of structures, and thus linear models may 

be assumed to be adequate in both the pre- and post-damage regimes. With this assump-

tion, a great deal of effort has been devoted to research in this area (Wu & Abe, 2003); 

(Bernal & Beck, 2004). However, significant challenges remain in their application to 

real world problems within the field of civil engineering. For instance, some of the chal-

lenges include having only incomplete information provided by the limited number of 

sensors; restricted operating bandwidth for modal identification; choices made in the pro-

cedure adopted, such as the objective function, the identification model selection, and the 

approach used to overcome the ill-posedness. The availability of adequate information 

and methodology used are strongly linked to the quality of the results. 

Even with these technical challenges, linear FE model updating applications has still re-

ceived more and more attention along with the growth of SHM technologies. In the SHM 

piloting research stage, for each SHM benchmark study listed in Table 1.1, there have 

been extensive literature shown that FE model updating has been successfully applied as 

one of the interrogation tools: Project 1 --- (Caicedo, Dyke, & Johnson, 2004); (Caicedo 

& Dyke, 2002); Project 2 --- (Gorl & Link, 2003); (Fritzen & Bohle, 2003); Project 3 --- 

(Garibaldi, Marchesiello, & Bonisoli, 2003); (Teughels & De Roeck, Structural Damage 

Identification of the Highway Bridge Z24 by FE Model Updating, 2004); Project 4 ---  

(Sanayei & DiCarlo, 2009). As shown in a more recent report (Catbas, Kijewski-Correa, 

& Aktan, 2011), a partial inventory of instrumented buildings in the literature includes 

about 500 buildings all over the world. Fifteen SHM cases studies (5 buildings and 10 

bridges) are chosen to be presented in details. Some brief information regarding these 15 

SHM applications is summarized in Table 1.2. 
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Table 1.1 SHM benchmark studies 

Index Time Benchmark Study Task Group Structure Profile 

1 1999-2002 
Building SHM IASC-

ASCE Benchmark 

International 

Association for Struc-

tural Control (IASC)-

ASCE 

four-story, two-bay by two-

bay laboratory scale model 

building (It has a 2.5m by 

2.5m plan and height of 3.6m) 

2 1998 
The STEELQUAKE 

project 

European Laboratory 

for Structural Assess-

ment (ELSA)-Joint Re-

search Centre (JRC) 

Two-storey full scale steel 

frame building. The main di-

mensions of the structure are 

8m by 9m 

by 3m 

3 1998 
Z24 bridge in Switzer-

land 

Brite Euram project 

BE96-3157 SIMCES 

(System Identification 

to Monitor Civil Engi-

neering Structures) 

Z24 is a prestressed bridge, 

with three spans, two lanes and 

60m overall length 

4 2005 
SHM of Highway 

Bridges 

Bridge Health Monitor-

ing (BHM) Committee 

of International Associ-

ation of Bridge Main-

tenance and Safety 

(IABMAS) 

The grid structure has two 

clear spans with total length of 

18ft. 6 ft long transverse 

beams are installed with 3ft 

spacing.  

 

Table 1.2 Case studies of SHM applications 

Index Time 
Structure 

Name 

Structure Pro-

file 

Monitoring  

System 

Model  

Updating 

1 2002 

Chicago Full-Scale 

Monitoring Program 

(Three tall buildings, 

with name and loca-

tion undisclosed) 

Buildings 1 and 3 

are steel framed 

structures and Build-

ing 2 has a rein-

forced concrete 

frame system 

Accelerometers, on-site 

datalogger with DSL 

modem, GPS, anemome-

ters. 

FE model was built 

for serviceability 

assessment in design 

phase. Updating is 

not performed. 

2 2004 

Four Seasons Build-

ing in Sherman 

Oaks, California 

Four-story 

reinforced concrete 

building 

36 accelerometers, 20 

displacement transducers, 

94 strain gauges, and 

wireless local area net-

work. 

Model updating was 

performed and cor-

responded well to 

locations of ob-

served damage in 

the building 
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Table 1.2 Case studies of SHM applications (cont.) 

3 
1989,200

7 

California Strong 

Motion Instrumenta-

tion Program 

(CSMIP, since 1972) 

A three-story con-

crete building in 

CSMIP 

Seismic data through The 

US National Center for 

Engineering Strong Mo-

tion Data (CESMD), a 

photograph of the station, 

sensor layouts, informa-

tion regarding station 

coordinates, site geology, 

building information, and 

foundation type. 

No FE model was 

built. Natural fre-

quencies were iden-

tified using strong 

motion data. 

4 
2008-

2009 

Guangzhou New TV 

Tower 

A 454 m high main 

tower and a 156 m 

high antenna mast. 

The main tower is 

composed of a rein-

forced concrete core 

and a steel lattice 

outer structure. 

About 800 sensors of 16 

types with three mass 

dampers are installed. 

A full-order 3D FE 

model and a reduced 

order FE model are 

developed. FE mod-

el is updated with 

measured modal 

properties. The up-

dated model will 

serve as baseline 

model for future 

damage detection. 

5 
2005-

2006 

Seven-Story RC 

Building Slice 

A full-scale seven-

story reinforced 

concrete building 

slice was tested on 

the UCSD-NEES 

shake table 

28 longitudinal accelera-

tion channels were used 

to identify the modal pa-

rameters of the test struc-

ture. 

A sensitivity-based 

finite element (FE) 

model updating 

strategy is applied 

for vibration based 

damage identifica-

tion of this test 

structure. 

6 2007* 

Henry Hudson 

Bridge in New York 

City 

The bridge features 

two deck levels sup-

ported by two, 256 

m long plate girder 

arches that provide a 

vertical clearance of 

44m. 

Two sensor layouts, with 

36 and 40 accelerometers 

respectively (7 are in 

common). 

A FE model is built 

and being updated 

manually to corre-

late with measured 

modal properties. 

7 2009* 
Throgs Neck Bridge  

in New York City 

The main span of the 

bridge is 549 m 

long, with an an-

chorage to anchor-

age total length of 

886 m. 

A total of 45 unidirec-

tional accelerometers are 

installed. 

A FE model is built 

and shows favorable 

correlation for a 

wide range of natu-

ral periods from 

0.50 seconds to 6.5 

seconds. No further 

updating is men-

tioned. 
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Table 1.2 Case studies of SHM applications (cont.) 

8 2006 
Golden Gate Bridge 

at San Francisco 

The bridge has a 

1280 m  long main-

span 

and 343 m side-

spans 

The WSN consisted of 64 

nodes for total 320 sen-

sors (accelerometers and 

thermometers). 

For FE model, all 

the modes (67 mod-

es below 5Hz) ex-

cept for the second 

transverse mode fall 

within the confi-

dence intervals. No 

further updating 

reported. 

9 2003 

Vincent Thomas 

Bridge in Los An-

geles 

A main span of 

457m, two sus-

pended side spans of 

154 m each 

26 accelerometers are 

installed by CSMIP. 

The monitoring data 

were applied in the 

damage detection of 

2003 earthquake 

(Big Bear, Califor-

nia), and forensic 

study of ship-bridge 

collision Accident in 

2006. No FE model 

updating was re-

ported. 

10 2008* 
Hakucho Suspension 

Bridge in Japan 

720 m center span 

and two symmetric 

side spans of 330 m 

21 accelerometers and 1 

anemometer are installed. 

No FE model was 

updated. 

11 2006* 
Yokohama Bay 

Bridge in Japan 

The central span is 

460m with side 

spans of 200m each 

The bridge is equipped 

with 85 channels of acce-

lerometers at 36 loca-

tions. 

No FE model was 

updated. 

12 2003 

Alfred Zampa Me-

morial Bridge near 

San Francisco 

A main span of 

728m and side spans 

of 147m and 181m 

A total of 64 channels (25 

vertical, 25 horizontal, 

and 14 longitudinal) of 

acceleration response 

data were recorded. 

Modal properties 

from a 3D FE model 

built at the design 

phase correlates well 

with measured ones. 

No further updating 

is performed. 

13 2010* 

Langensand Bridge 

in Lucerne (Switzer-

land) 

A steel-concrete 

composite girder 

with a 80m long 

span 

Static-load test was per-

formed with: optical de-

vices (displacements), 

inclinometers (rotations), 

fiber-optic sensors (de-

formations) 

A parameterized FE 

model was used to  

generate the set of 

candidate models 

with the measure-

ments. 

14 2007* 
Sunrise Movable 

Bridge in Florida 

It has double bascule 

leaves, each 22.49m 

long approximately, 

and 26.15 m wide 

Total of 168 sensors are 

deployed, including acce-

lerometers, strain ro-

settes, tiltmeters, micro-

phones, infrared tempera-

ture sensors, amp meters, 

video cameras, and pres-

sure gages 

The first 3 modes of 

the FE model agree 

well with the identi-

fied results using 

measured data. No 

further updating is 

performed at this 

stage. 
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Table 1.2 Case studies of SHM applications (cont.) 

15 2007* 

New Svinesund 

Bridge connects 

Sweden and Norway 

A single-arch bridge 

with a total length of 

704 m and a main 

span of 247 m. 

The arch is equipped with 

24 strain gages and 24 

temperature sensors. The 

dynamic response of the 

bridge is monitored by 10 

accelerometers. The other 

sensor types are strain 

gages, temperature sen-

sors, LVDTs, anemome-

ters 

A FE model that 

was initially built in 

the design stage is 

updated by: 1) ma-

nual model calibra-

tions; 2) model up-

dating using optimi-

zation. 

Note: In some cases, the instrumentation, data acquisition and monitoring study may not be conducted at 

the same time, therefore, the “Time” marked with * is the time of the corresponding study published in the 

literature.  

Out of the 15 case studies listed in Table 1.2, eleven applications have constructed at 

least one model to help with the performance assessment of the structure. These models 

have been correlated with collected measurements by certain chosen index, for example, 

modal information or deformation under static loading. Among these 11 applications, 5 

cases have conducted the FE model updating process with either modal information or 

static load test results, or both. Their goals of the model updating or calibration process 

are --- to identify possible damage (reduction of stiffness); and to provide an accurate 

baseline structure for further damage detection or performance assessment. 

In this dissertation, a new approach is proposed as an efficient procedure for linear FE 

model updating, especially for higher order problems. Here, subset selection (Lallement 

& Piranda, 1990); (Friswell, Penny, & Garvey, 1997); (Titurus, Friswell, & Starek, 2003); 

(Song W. , Dyke, Yun, & Harmon, 2009),  a multivariate regression method, is used in 

conjunction with a damage function (Teughels, Maeck, & De Roeck, 2002), efficiently 

reducing the size of the original updating problem. This integrated approach has been 

found to result in an accurate assessment of the damage distribution in a complex struc-

ture. A high-fidelity model of the structure considered is used as the “true” reference 

model, whereas a model with limited sensor information is used as the analytical model 

to be updated. Thus, the effects of modeling errors are included in evaluating the ap-
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proach. It is also noteworthy to mention that a model expansion process (System Equiva-

lent Reduction Expansion Process --- SEREP) (O'Callahan, Avitabile, & Riemer, System 

equivalent reduction expansion process (SEREP), 1989) has been applied to enhance the 

information available from the sensor data facilitating the updating of a higher order 

model of the system. The influence of this model expansion process on the modal para-

meter (frequencies and mode shapes) sensitivities in the optimization is also considered.  

1.2.2 Nonlinear FE Model Updating Method 

The linear FE model updating methods based on ambient vibration data only consider 

changes in linear stiffness and mass terms associated with a structural model. Reductions 

in the elemental elastic moduli of a FE model are typically assumed to represent such 

damage. To date, these methods do not provide a means to update the parameters that go-

vern either nonlinear behavior under monotonic loading or deterioration of material prop-

erties under cyclic loading. Therefore, they are not appropriate for evaluating the remain-

ing lifetime or the capacity of the structure, especially under hazardous loading condi-

tions. However, with experience and insight, researchers are still able to apply nonlinear 

FE models manually for performance assessment of structures under hazardous loading 

events (Browning, Li, Lynn, & Moehle, 2000). So far, the research reported on perform-

ing nonlinear FE model updating in a systematic manner is still largely missing in the li-

terature. 

The nonlinear FE model updating method proposed in this dissertation contains a reliable, 

high fidelity nonlinear finite element model, as well as a systematic procedure to perform 

damage detection and, more importantly, model updating for post-damage prognosis. The 

method is designed to use low-level ambient vibration data to first detect changes in the 

modal parameters (natural frequencies and mode shapes) by means of a modal identifica-

tion algorithm. With the modal information extracted in the similar way as linear model 

updating, the instantaneous tangent stiffness of a finite element model of the structure is 

calibrated through a linear model updating technique. It has been recognized that in some 

classes of reinforced concrete (RC) structures, the degradation of the capacity of the 

structure occurs with a change in the zero-load crossing instantaneous stiffness (Brown & 
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Kunnath, 2004); (Mansour & Hsu, 2005); (Palermo & Vecchio, Compression Field 

Modeling of Reinforced Concrete Subjected to Reversed Loading: Verification, 2004). 

Therefore, the degradation of instantaneous stiffness (zero-crossing stiffness) is selected 

as an indicator to represent the severity of the damage. For these structures, based on the 

nonlinear material model and a mathematical description of the relationship between the 

damage parameters and instantaneous stiffness degradation under low level excitation 

(ideally considered as zero-load crossing), the parameters which control the nonlinear 

material model can be updated. The updated nonlinear model may be utilized to not only 

evaluate the structure‟s current damage state but also to predict its future behavior. 

1.2.3 Nonlinear Real-time Model Updating Method 

Many civil engineering structures exhibit hysteresis when subject to extreme loading 

conditions, such as earthquakes, winds or sea waves. It is a challenging problem to model 

and identify such hysteresis, let alone the possibility to perform the associated model up-

dating in on-line or real-time environment. However, a recently developed state observer, 

the unscented Kalman filter (UKF), makes on-line or even real-time model updating 

possible for such nonlinear systems. 

In systems engineering, a state observer is a system that models a real system in order to 

provide estimates of its internal states, given the measurements of inputs and outputs of 

the real system. In the recent years, several observer-based nonlinear hysteretic modeling 

techniques have been developed, including the least squares estimation (LSE) (Smyth, 

Masri, Chassiakos, & Caughey, 1999); (Lin, Betti, Smyth, & Longman, 2001); (Yang & 

Lin, 2005); (Yang & Huang, 2007), the extended Kalman filter (EKF) (Ghanem & 

Shinozuka, 1995a); (Ghanem & Shinozuka, 1995b);(Hoshiya & Saito, 1984);(Yang, Lin, 

Huang, & Zhou, 2006);(Yun & Shinozuka, 1980); (Song & Dyke, 2010); the unscented 

Kalman filter (UKF) (Chatzi & Smyth, 2008); (Julier, Uhlmann, & Durrant-Whyte, 

2000); (Mariani & Ghisi, 2007); (Van der Merwe, Wan, Julier, Bogdanov, Harvey, & 

Hunt, 2004); (Wu & Smyth, 2007);(Wu & Smyth, 2008); (Chatz, Smyth, & Masri, 

2010);(Song & Dyke, 2010) and particle filter (PF, also known as sequential Monte Car-

lo methods) (Chatzi & Smyth, 2008); (Van der Merwe & Wan, 2003). Meanwhile, in 
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control system engineering, the high gain (HG) techniques have also been reported to be 

efficient in state estimation (Gauthier, Hammouri, & Othman, 1992); (Garrido, Rivero-

Angeles, Martinez-Guerra, Gomez-Gonzalez, & Martinez-Garcia, 2004).   

The commonly used LSE methods require measurements such as displacement, velocity 

and nonlinear restoring force. Because most of these measurements are difficult to obtain, 

the practical implementation of LSE is limited. But recently, a least-squares based ap-

proach has been developed with unknown inputs and outputs (Yang & Huang, 2007). Al-

ternatively, PF provides optimal Bayesian estimate of the states, but with a large number 

of samples. This requirement usually implies a higher computational demand, which 

renders the real-time implementation difficult (Chatzi & Smyth, 2008). The study in this 

dissertation mainly demonstrates the EKF, UKF and HG typed observers in terms of up-

dating nonlinear hysteretic model with state estimates and parameter identification, con-

sidering the fact that they could be implemented on-line and potentially in real-time. 

The EKF is the nonlinear version of regular Kalman filter (KF) by linearizing the nonli-

near system at current estimate. It has been widely implemented in nonlinear system es-

timation applications, such as navigation systems and global positioning systems (GPS) 

(Van der Merwe, Wan, Julier, Bogdanov, Harvey, & Hunt, 2004); (Zhao, Ochieng, 

Quddus, & Noland, 2003). And there are many research activities on the EKF and its ap-

plication on civil engineering structures, such as structural damage identification and pa-

rameter identification. However, because the EKF actually calculates the Jacobian of the 

system at every time step, it requires the state and observation functions to be differentia-

ble at corresponding state. On the other hand, the UKF does not require the Jacobian, and 

therefore is more versatile in modeling highly-nonlinear systems or systems with singular 

state point. The UFK approximates the statistics of the state variables using a set of sam-

ple points, which may cause a little more computational effort than the EKF, but in gen-

eral yields more accurate state estimations (Wu & Smyth, 2007). The HG typed observer 

that is examined in this dissertation, is based on Lyapunov theory. Several constraints 

come with the method. First, this HG observer assumes that the parameters present in the 

system are known; second, displacement is assumed to be the measurement. These two 
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assumptions arise from the special form of the nonlinear systems that it can observe 

(Gauthier, Hammouri, & Othman, 1992); (Martinez-Guerra, Suarez, & De Leon-Morales, 

2001); (Garrido, Rivero-Angeles, Martinez-Guerra, Gomez-Gonzalez, & Martinez-Garcia, 

2004). Even though it is not a stochastic observer like the EKF and UKF, robust perfor-

mance can still be achieved under moderately noisy measurements and unknown initial 

conditions. To demonstrate the performance of different observers, a numerical example 

using Bouc-Wen model acting as the nonlinear system to be updated is included. EKF, 

UKF and HG observers are applied to compare the state estimation results, and for the 

EKF and UKF, the parameter identification results will be compared as well. 

The experimental studies on applying the aforementioned nonlinear observer techniques 

are very limited. In (Zhou, Wu, & Yang, 2008), the performance of adaptive extended 

Kalman filter (AEKF) approach (Yang, Lin, Huang, & Zhou, 2006) is examined with a 

series of experimental tests on a small scale three-story building model. The structural 

behavior remains linear in the experiment. However, to simulate damage, the stiffness of 

the building model is adjusted by the installed Stiffness Element Device (SED). Another 

experimental study is (Chatz, Smyth, & Masri, 2010). The experimental data was taken 

from (Tasbihgoo, Caffrey, & Masri, 2007), which characterize the hysteretic behavior of 

a nonlinear mechanical joint. The UKF is applied to the adopted data to update a group of 

nonlinear models. None of the above experimental study has demonstrated the real-time 

capability of these observers. 

1.3 Usages and Limitations of Model Updating 

The goal of model updating is to assess the structural performance by reducing the dis-

crepancies between the model and the real structure. A reliable data source with reasona-

ble hypotheses and calibration techniques, can provide an updated model to facilitate 

many engineering applications. 

The most direct application of model updating lies in SHM. As mentioned in the litera-

ture review (section 1.2), model updating can provide quantitative information of the 
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possible changes in the structure by comparing the updated model to its baseline counter-

part. The quantitative information contains: 

 structure state parameters and its variation throughout its service life, such as dis-

placements and  global stiffness; 

 certain performance indicators that can be linked to the estimation of the servi-

ceability and vulnerability of the structure, for example, linear FE model updating 

usually chosen linear stiffness reduction as an indicator of damage or deteriora-

tion; nonlinear FE model updating usually choose the maximum deformation or 

dissipated energy as indicators. 

The above quantitative information can assist owners and managers with the decision-

making process. As pointed out in (Catbas, Kijewski-Correa, & Aktan, 2011), if we con-

sider decision-making as a risk management process, the information acquired by model 

updating can be seen as the reduction of the uncertainty premium in finding the actual 

risk of the structure. With the effort in updating being put into better correlating the mod-

el performance with the actual structure, this reduction of uncertainty often leads to better 

estimate of vulnerability. 

The model updating can be applied in earthquake engineering. The earthquake engineer-

ing community has identified the improvement of resilience and sustainability of the en-

tire community as an overarching theme in the next generation of earthquake engineering 

research (Dyke, et al., 2010). Based on the introduced  features of model updating, the 

connection between model updating, especially nonlinear and real-time model updating 

techniques, and this theme, is discussed in the following respects: 

 Pre-earthquake and post-earthquake condition assessment 

In earthquake engineering, the condition assessment is given particular emphasis. Pre-

earthquake assessment can provide information for the community to be better pre-

pared for hazardous situation, and post-earthquake assessment can provide informa-

tion for stakeholders to make repair and recovery plans. Both of the two assessment 

processes require lots of resources and time. According to (Olshansky, et al., 2011), 
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after 1994 Northridge earthquake (Mw=6.7, 57 direct death, economic loss $41.8 bil-

lion), Federal Emergency Management Agency (FEMA) and California Governor's 

Office of Emergency Services (OES) funded a consortium of universities and profes-

sional engineering organizations to initially conduct a two-year study to develop inte-

rim solutions for the identification, evaluation, repair and modification of damaged 

welded steel moment frame buildings. In addition to interim solutions, the SAC Steel 

Project (www.sacsteel.org) --- with joint venture partners from the Structural Engi-

neers Association of California (SEAOC), the Applied Technology Council (ATC), 

and Consortium of Universities for Research in Earthquake Engineering (CUREE) al-

so developed new design and construction approaches, and produced numerous tech-

nical reports and guidelines. The Project concluded in 2000. In another devastating 

earthquake ---1995 Kobe earthquake (Mw=6.8, 6400 direct death, economic loss $150 

billion), the inspection of buildings took 2 years before reoccupation (Farrar & 

Lieven, 2007). The fact is, according to (Olshansky, et al., 2011), in March 1998, 15 

895 households still lived in temporary housing in Hyogo Prefecture; 14 934 of these 

were in the city of Kobe. By January 1st 1999, 5 841 temporary housing units were 

still in use. The slow recovery in the reoccupation of buildings and housing units cer-

tainly is a complex issue, involving more than just structural inspection and repair. 

Nonetheless, a reliable and efficient means to evaluate the structure condition certain-

ly can reduce the economic and human losses. In other words, they can improve the 

resilience of a community. 

Performance or condition assessment is one of the basic functionalities of model up-

dating. Model updating for pre-earthquake assessment can provide the current condi-

tion of the structure. And with the consideration of a nonlinear model, updating may 

provide a baseline model to predict potential damage that may be caused by an im-

pending earthquake. In post-earthquake assessment, by comparing with the baseline 

model, a post-earthquake updated model can evaluate the location and severity of 

damage. This capability is particularly important to reduce the further loss of life. 

Stakeholders may utilize this updated model to evaluate if the structure can survive 
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the coming aftershocks or possible tsunami hits, so that a rapid recovery or reoccupa-

tion plan could be successful. 

 Fully utilize the cyberinfrastructure 

First, model updating technique can benefit from current available community-level 

cyberinfrastructure of the George E. Brown, Jr. Network for Earthquake Engineering 

Simulations (NEES). The validation of model updating technique on large or full-

scale structures is difficult, because of the initial cost associated with constructing and 

testing such a structure system, and, eventually controlling its damaging states since 

the ultimate goal is to compare the estimates and predictions of structural perfor-

mance at various healthy states. With the help of NEES cyberinfrastructure, experi-

mental data from NEES research projects are accessible to the entire community. 

Strong wall and shake table tests with high resolution recorded data and video feeds 

are potential candidates for model updating experiments. It is also possible to collabo-

rate with proper NEES research project as a payload test opportunity.  

The model updating verification study can fully utilize the current available SHM 

systems as a cyber platform. With advances in sensing technologies and develop-

ments in WSN, a well equipped SHM system often realizes the ability of field dep-

loyment, continuous data logging/compression, autonomous data interrogation. Such 

a system, combined with the monitored structure it attaches to as physical compo-

nents, forms a full-fledged example of cyber-physical system (CPS). This approach is 

not new to earthquake engineering. The earthquake engineering community has dep-

loyed large networks of seismic stations to generate and archive ground motion data. 

Some of these networks actually instrumented the structures as well (Song, Giraldo, 

Clayton, Dyke, & Caicedo, 2006); (California Geological Survey, 1972). Whether the 

strong motion data is suitable for linear FE model updating or not is still questionable, 

but with the nonlinear model updating techniques developed in this dissertation, these 

monitoring systems are certainly applicable as a platform for the implementation of 

these model updating techniques due to their enabled monitoring environment, such 

as automated data acquisition, communication network or even data analysis. Taking 

the California Strong Motion Instrumentation Program (CSMIP) as an example, it 
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was initiated by California Legislation in 1972, with the purpose of establishing a 

sensor network for recording strong ground motion and induced structure responses 

for the engineering and research communities (Catbas, Kijewski-Correa, & Aktan, 

2011); (California Geological Survey, 1972). The recording of sensor data, however, 

is trigger-based, such that the signal is recorded only if the signal level passes certain 

threshold and is characterized as strong motion. The reason for setting the trigger is to 

reduce the amount of data to be recorded in the case of a long term continuous moni-

toring. Therefore, data under ambient vibration or low level excitation that is not 

large enough to trigger the data logger are wasted. But the recorded strong motion da-

ta can certainly be used for nonlinear model updating tests. With the development of 

large, inexpensive hard drives, storage is no longer a problem, and therefore conti-

nuous monitoring is possible and currently implemented in many SHM applications 

(see Table 1.2). For such as SHM system, the combined use of multiple model updat-

ing techniques is desirable for maximizing the use of data. This statement will be ela-

borated upon in the later part on combining multiple model updating techniques. 

 Rapid assessment and risk communication 

With the capability of condition assessment and a well enabled SHM platform, model 

updating technique can be executed in real-time to realize rapid assessment and risk 

communication. In the event of an earthquake, reducing the response time means mi-

nimizing the earthquake impact to the loss of life, economy and disruption of the so-

ciety. While the prediction of earthquake is still bounded with uncertainty, a rapid or 

real-time earthquake information system has been developed and applied for many 

years. Real-time seismic information systems are capable of providing basic earth-

quake information within minutes, or even tens of seconds (Kanamori, Hauksson, & 

Heaton, 1997). In some cases, where the epicenter is remotely located from urban 

area, notification can be made even before the ground shaking begins (early warning). 

This step may allow for clean emergency shutdown for systems susceptible to dam-

age, such as power stations, transport and computer systems; and activate the protec-

tion systems, such as vibration control system or public shelters. On the other hand, 

the real-time condition assessment can enhance the situational awareness to the first 
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responders (e.g., police, fire fighters, authorities, FEMA, etc.) (Dyke, et al., 2010). 

The real-time model updating technique can evaluate the severity of the structural 

damage during the earthquake event, and the generated real-time assessment informa-

tion can help first responders prioritize their missions to optimize the limited re-

sources. Even after the major earthquake hit, the damage zone is still threatened by 

aftershocks, tsunami, landslides, liquefactions, floods and fires. The updated informa-

tion of condition assessment under such a complex environment is extremely valuable 

to the authorities. 

What the 1994 Northridge and 1995 Kobe earthquakes, 2005 Hurricane Katrina, and 

2010 Chile earthquake disasters have in common is that they all struck relatively 

dense, modern urban settings. In such a region, the infrastructure such as highway 

system, power grid and pipelines are relatively well developed. While the earthquake 

hit may paralyze part of the infrastructure, the government emergency personnel still 

rely on the remaining system which are still functioning for possible immediate evac-

uation or rescue. The information carried by real-time assessment in this case is not 

just valued by its instantaneous performance estimate, but rather by the other dimen-

sion --- time. With time serving as the index, real-time condition assessments of the 

infrastructure systems at different locations can be synchronized to represent a per-

formance map in a geographically distributed network. In this case, real-time model 

updating is applied as a new tool to facilitate this type of spatial-temporal analysis for 

network operation and emergency response by enabling anticipation of network fail-

ure and optimize evacuation route or repair scheduling. The infrastructure network in-

formation becoming available in a timely manner is a sign of promoting the resilience 

level from an individual structure to a collective community. 

 Integrate with seismic resistance system  

The earthquake engineering community has recognized the development of high per-

formance building systems and materials as one of the research challenges and needs 

to achieve the vision of resilient communities (Dyke, et al., 2010). Seismic base isola-

tion, self-centering framing systems with rocking or post-tensioning, and moment 

frame or wall systems with new high damping semi-actively controlled materials are 
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some examples of recent development in damage resistant seismic systems. For some 

of the controlled components in base isolation or damping devices, real-time feedback 

of the structure is needed. With the development of real-time computing and embed-

ded systems, real-time model updating, with the capability of providing real-time 

state feedback, can be integrated to improve the performance of  these components. 

 

Figure 1.1 Evolution of structural behavior subject to multiple loading events 

Each model updating technique has its assumptions and applicable range. Over the life 

time of a structure, it is possible that these assumptions may not hold at all times. Figure 

1.1 demonstrates a possible evolution of structural behavior during its service life. Most 

of the time, the low level ambient vibration caused by wind or traffic load is dominant. 

During this period of time, the structural behavior is linear. Once a damaging loading 

event occurs, the structural behavior may go to the nonlinear regime but finally settles 

(unloads) to a zero-loading point. After that, under the low level ambient excitations, the 

structure will vibrate near the new zero-loading point until another damaging event oc-

curs. While the structural behavior changes during its service time, the use of model up-

dating technique needs to be adjusted accordingly. Linear model updating can be used by 

comparing the changes between stage 1 and 3, since the structural behavior is linear in 



24 

 

both stages. These changes, once being identified, can be used to interpret the possible 

structural damage during stage 2. With the same information extracted from stage 1 and 3, 

if a proper nonlinear FE model can be constructed (refer to section  2.2) for the structure, 

the nonlinear FE model updating can then be applied as well. The updated nonlinear 

model aims to predict if the structure is able to survive the next potential disaster, say the 

loading event in stage 4. 

As one can see, both of the above cases utilize the data in stage 1 and 3, meaning before 

and after the damaging events. But none of them make use of the data during the damag-

ing events. This situation is similar to the use of strong motion database. By applying the 

real-time nonlinear model updating technique, the data during the damaging events can 

also be utilized for model updating. Even though in real-time computing, the system 

models are usually simplistic to satisfy the computational constraints, the timely informa-

tion yielded from it can still be very valuable for researchers for the reasons mentioned 

above. On the other hand, the FE models generally provides information with higher res-

olution. The use of multiple model updating techniques are not mutually exclusive, and 

they can certainly be combined to maximize the use of data, and produce a better overall 

updating strategy.  

To date, the use of model updating has still not been fully translated to practice. There are 

practical reasons, such as the limited applications of SHM cannot provide ideal platform, 

and FE modeling is not a common practice in the design phase therefore the availability 

of models are limited. However, the uncertain nature embedded in the model updating 

formulation is a more decisive factor. 

Model updating is formulated as an inverse problem, attempting to estimate unknown 

information by correlating the model performance with that of the real structure. Every 

real structure is a complex system, with its own performance influenced by many factors, 

many of which are random in nature. For example, the modal information which is neces-

sary to linear model updating, is affected by nonuniform material properties, nonlineari-

ties, boundary conditions, nonstationary loading condition. Even environmental tempera-

ture change and wind speed variation have a noticeable impact on modal information.  
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With the monitoring data from Bill Emerson Bridge (with the main span 350.6 m in 

length, and the side spans 142.7 m in length, located at Cape Girardeau, Missouri), 84 

five-minute data sets with uniformly distributed temperature ranging from 20 F to 80 F 

are selected for modal identification. The results (Song & Dyke, 2006) show that the 

identified fundamental frequency of the bridge exhibits a “bell-shaped” distribution (see 

Figure 1.2), and the deviations of the first 20 natural frequencies can be as large as 6%. 

Researchers at Los Alamos reported a 5% change in 24 hours for the first natural fre-

quency of the Alamosa Canyon Bridge. In the one-year monitoring of the Z24 Bridge in 

Switzerland, the environmental changes caused 14-18% variation of the first 4 natural 

frequencies (Peeters & De Roeck, 2001). As for wind speed, in the Hakucho Suspension 

Bridge monitoring project (Siringoringo & Fujino, 2008), as the wind velocity varied 

from 3 to 15 m/s, it is reported that there were 4.6% and 2.2% variations for  the first and 

second natural frequencies, respectively, and 0.2%–6% and 0.1%–5% for the correspond-

ing damping ratios. Not fully recognizing the real world complexities subsequently 

creates the uncertainties or even misinterpretation in model updating. This fact is one of 

the major reasons for model updating to provide multiple updating results (Zarate & 

Caicedo, 2008), and false positive or negative assessments.  

 

Figure 1.2 Distribution of the temperature (left) and 

 identified fundamental frequencies (right) of Bill Emerson Bridge 
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Another issue related to the uncertainties is the modeling itself. A refined FE model with 

a large number of degree-of-freedoms (DOFs) may be able to represent more complicated 

behavior, but is not the ideal candidate for model updating. More DOFs indicates more 

unknowns to be estimated with information provided by the limited amount of sensors. 

Unless a dense enough sensor network is available, more DOFs and complicated models 

can only result in more uncertainties. Therefore, the model used in updating is usually 

simplified or condensed from the full model, with only salient features preserved. 

Development of a reliable model updating SHM system is still a challenging task. Re-

searchers already start to made progress towards incorporating uncertainties in the model 

updating, for instance, by introducing nonlinear model updating to take into account the 

nonlinearity, and by applying statistical analysis to remove environmental effects (Yan, 

Kerschen, De Boe, & Golinval, 2005a); (Yan, Kerschen, De Boe, & Golinval, 2005b); 

(Giraldo, Dyke, & Caicedo, 2006). However, there are still many types of uncertainties 

that are difficult to accommodate without heuristics. Judgment regarding the boundary 

conditions, choices made on overall material strength of a long-spanned bridge deck with 

possible material variation pose challenges to the engineers. These uncertainties, if not 

addressed properly, may destroy the entire analysis. Therefore, even though model updat-

ing can provide timely assessment of structure condition, it should not underplay sound 

heuristic knowledge and engineering expertise. Many empirical principles have been es-

tablished and successfully applied in civil engineering profession for a long time, such as 

visual inspection, chain dragging, hammer sounding and on-site load testing. A combina-

tion of modern SHM techniques with traditional engineering practice is desirable. If ma-

nually operated inspections are considered as isolated points in the maintenance cycle 

through a structure‟s lifetime, then continuous SHM can be applied to fill in the remain-

ing blanks. The efficiency and effectiveness of these traditional inspection methods can 

be improved with model updating by its condition assessment. Furthermore, inspection 

methods can serve as qualitative guidance to reduce the uncertainties faced by model up-

dating. Several successful manual model updating applications provide excellent exam-

ples (Catbas, Kijewski-Correa, & Aktan, 2011). 
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1.4 Overview 

The focus of this dissertation is the development and implementation of three proposed 

dynamic model updating methods, linear FE model updating, nonlinear FE model updat-

ing, and nonlinear real-time model updating. This dissertation is organized in the follow-

ing manner: first introduce the background of the development of the proposed dynamic 

model updating methods and associated structural dynamic models; then, the implemen-

tation issues for each of the proposed method are explained in details, with possible solu-

tion provided; numerical and experimental studies are also included; finally, conclude 

with the significance of the research findings and future research directions. 

CHAPTER 2 (Background) presents the theoretical background with a number of topics 

to explain the development of the proposed model updating methods. The topics included 

are: numerical techniques used for linear and nonlinear FE model updating method (espe-

cially for higher-dimension models), mathematical models employed in both FE model 

updating method, introduction to the development of real-time model updating technique, 

equipment and experiment set up, and other issues related to the implementation of the 

model updating methods. 

CHAPTER 3, CHAPTER 4 and CHAPTER 5 (Numerical Study of Linear FE/Nonlinear 

FE/Real-time Model Updating) describe the numerical studies for linear FE model updat-

ing, nonlinear FE model updating, and real-time nonlinear model updating.  

In CHAPTER 3, starting with a simple 1D beam, the numerical study first demonstrates 

several essential concepts related to the proposed linear model updating approach. A 

more advanced example considering a 2D plane stress model is then considered to dem-

onstrate the efficacy of the proposed method in the case of a higher dimension model 

with more degree-of-freedoms (DOFs), and potentially more unknowns.  

The numerical implementation of the nonlinear FE model updating method is discussed 

in CHAPTER 4. A reinforced concrete shear wall tested by (Pilakoutas & Elnashai, 1995) 

is selected to demonstrate the capability of proposed nonlinear FE model updating me-



28 

 

thod. The cyclic test data has been utilized first to examine the accuracy of the reinforce 

concrete material model employed. Then, damage is simulated by imposing bi-directional 

Northridge earthquake excitations on the shear wall model. The proposed nonlinear FE 

model updating methodology is then applied to examine its capability in locating and 

quantifying the damage, and the accuracy of using the updated model for future response 

prediction.  

CHAPTER 5 presents the numerical studies of the real-time model updating techniques. 

Three different sets of problems are considered. The first set is the real-time updating of 

the original Bouc-Wen model. In this problem, UKF, EKF and HG techniques have been 

implemented and their performances have also been tested to examine the strength of 

each method. Then UKF is selected as the candidate as the updating scheme for the 

second and third problem sets, which are the updating of a phenomenological MR dam-

per model and the updating of a modified Bouc-Wen model with degrading unloading 

stiffness and strength, respectively. This numerical study is a preparation step for the ex-

perimental studies that will be discussed in CHAPTER 6 and CHAPTER 7. The perfor-

mance of the updated models are examined by comparing the relative errors under vari-

ous noise levels in the root-mean-square (RMS) sense. 

CHAPTER 6 and CHAPTER 7 present the details of the experimental studies for two 

real-time model updating cases: real-time model updating for MR damper and real-time 

model updating for nonlinear shear building.  

The real-time updating experiment for MR damper is described in CHAPTER 6. The 

real-time updating is realized for a series of MR damper tests, with the displacement in-

put ranges from sinusoidal to random. The level of input current to damper is also chosen 

as study variable. Prior to the formal tests, several preliminary tests are conducted for 

model selection and noise level measurements. Off-line updated models are also obtained 

by applying an optimization scheme to the recorded data. In the final stage of the MR 

damper real-time updating tests, not only the mechanical part of the damper can be up-

dated, the power supply unit of the damper system is also being updated. The perfor-
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mance of all the updated models are examined in the comparison tests in the form of sev-

eral error indices. 

CHAPTER 7 presents the experimental study on real-time model updating of a shear 

building structure. The shear building is chosen to exploit its nonlinear hysteretic beha-

vior generated from its structural components (steel columns and joints in this case). Cyc-

lic tests are conducted first to examine the nonlinear hysteretic model for the building 

specimen. Again an off-line updated model is obtained by applying an optimization 

scheme to the recorded data. Then, a shake table test with El Centro earthquake input is 

performed to drive the structure to the nonlinear regime and the model updating is per-

formed simultaneously in real-time with the test. The performance of both the real-time 

and off-line updated models are examined in the comparison tests. 

Finally, CHAPTER 8 (Conclusion and Future Work) summarizes the results from the 

numerical and experimental studies for the proposed dynamic model updating strategies. 

The pros and cons for each strategy are presented. The potential applications and future 

topics in need of further investigation are also identified and recommended in this chapter. 
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CHAPTER 2 

BACKGROUND 

A number of topics are reviewed and discussed in this chapter. These topics describes the 

techniques adopted in the development of the dynamic model updating methods, and the 

equipment and environment used in the subsequent experimental studies. This chapter 

begins with detailed information on the numerical algorithms and computational treat-

ment in the linear FE model updating method, and how to overcome the ill-posedness 

embedded in the general problem. Next, the nonlinear mathematical models are intro-

duced for later use in the nonlinear model updating method developed. Subsequently, the 

unscented Kalman filter (UKF) used in real-time nonlinear model updating is presented 

with a detailed description of the properties of the filter, and the procedure for its imple-

mentation in the real-time computing environment. In the end, the equipment and some 

implementation issues for the experimental studies are discussed. 

2.1 Development of Linear FE Model Updating Method 

In this section, several key components of linear FE model updating methods are intro-

duced. More than one choice can be made for each component to function. The following 

topics are chosen to provide sufficient background for the development of proposed FE 

model updating technique, based on their efficiency and performance to overcome the 

challenging task of updating high fidelity FE model with limited information. 

2.1.1 General Methodology and Objective Function 

To date, in most SHM applications, structural damage is generally characterized as reduc-

tion in stiffness. By updating an analytical model to reproduce measured dynamic beha-
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vior (e.g. eigenfrequencies and/or mode shapes), the change in stiffness can be identified, 

and thus the related damage can be located and quantified. Based on this basic procedure, 

selection of the objectives used to “update” the model can vary, even though it is built 

upon the same basic dynamic information (frequencies and mode shapes). The objective 

function normally takes the form of residuals between an analytical model and measured 

experimental results. However, the specific form of the objective function is not only a 

measure of the model accuracy, but also directly impacts the condition of the optimiza-

tion problem to be solved. Researchers have proposed numerous objective functions and 

attempted to incorporate as much information as possible, especially those from mode 

shapes which characterize the spatial information of damage. The modal flexibility resi-

dual (Aktan, Lee, Chuntavan, & Aksel, 1994) has been shown to be a particularly sensi-

tive measure of damage and is thus used in this study. 

Defining 𝚽 as the mass normalized mode shape matrix, 𝚱 as the stiffness matrix and 𝐌  

as the mass matrix, consider the eigensolution for a dynamical system 

 𝚽T𝚱𝚽 = 𝚲 (2.1) 

where 𝚲 = diagonal matrix composed of corresponding eigenvalues. Note that the mode 

shapes used in this chapter are always mass normalized 

 𝚽T𝐌𝚽 = 𝐈 (2.2) 

From equation (2.1), the modal flexibility matrix 𝐅 can be obtained as 

 𝐅 = 𝐊-1 =  𝚽-T𝚲𝚽−1 −1 = 𝚽𝚲−𝟏𝚽T  (2.3) 

By examining the expression for flexibility matrix 𝐅 in equation (2.3), it is clear that the 

experimental modes that are low in terms of the associated natural frequencies contribute 

more to the flexibility. Thus, formulating the modal flexibility using experimental data 

with a limited number of lower modes yields an effective estimate of the complete flex-

ibility matrix 𝐅.  
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In this case, the experimental modal flexibility 𝐅exp  would be computed as 

 𝐅exp = 𝚽m𝚲m
−1𝚽m

T ≈ 𝚽𝚲−𝟏𝚽T = 𝐅 (2.4) 

using the measured mode shape matrix 𝚽m  and eigenvalue matrix 𝚲m , which typically 

include a select number of lower modes. For simplicity, without specific indication, he-

reafter the measured (i.e., identified) mode shape matrix 𝚽m  will be referred to as 𝚽 and 

eigenvalue matrix 𝚲m  will be referred to as 𝚲.  

In experimental implementation of the proposed method, the experimental flexibility ma-

trix 𝐅exp  would be obtained by equation (2.4) via a system identification process, and, 

thus, becomes the target or object that the analytical model attempts to match. The mass 

matrix is also assumed to be unchanged before and after the damage. This assumption is 

applicable in damage scenarios related to deterioration of the material without loss of 

mass. The resulting optimization problem can be stated as 

 min
𝛉
𝚷 𝛉 =

 𝐄 𝛉  Fro
2

 𝐄 𝛉0  Fro
2  (2.5) 

where, 

 𝐄 𝛉 = 𝐅ana  𝛉 − 𝐅exp  𝛉  (2.6) 

𝛉 = the vector of damage parameters defined via damage functions in the analytical 

model (see equation), which satisfies that  θ𝑖 ∈  0,1 ,∀θ𝑖 ∈ 𝛉,  ∙ fro = Frobenius norm 

of a matrix; and 𝐄 𝛉0  denotes the value of equation (2.6) when the damage parameters 

are chosen at a certain initial value 𝛉0. In the linear FE model updating method, the dam-

age parameters θ𝑖  are associated with certain material constants such as the elastic mod-

ulus 𝐸 and the shear modulus 𝐺 to realize damage.  

The modal flexibility matrix obtained from the analytical model 𝐅ana  to be updated is 

written as  
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 𝐅ana = 𝚽 𝚲 −𝟏𝚽 T  (2.7) 

and the experimental modal flexibility matrix from reference model 𝐅exp  is written 

 𝐅exp = 𝚽 𝚲 −𝟏𝚽 T  (2.8) 

where 𝚽  and 𝚲 = mode shape and eigenvalue matrix obtained from analytical model,  

𝚲 = the eigenvalue matrix directly obtained from the modal identification results in expe-

riment, 𝚽  is the mode shape matrix expanded from the experiment identification results 

through a process that will be described in section 2.1.2. Note that for all the mode shapes 

and eigenvalues in both models, only a limited number of modes are considered based on 

the restriction inherent in modal identification (equal to the number of modes that can be 

identified). 

2.1.2 Model Expansion/Reduction Process 

In most real world SHM applications, there is a gap between the size of the matrices built 

using the measured information (equal to the number of sensors), and the number of  de-

grees-of-freedom (DOFs) in the analytical model. This conflict must be resolved for con-

structing an experimental modal flexibility matrix of the same size as the analytical mod-

el, i.e., to make equation (2.6) valid. Two approaches are available to deal with this size 

mismatch. First, one can employ a model reduction process to reduce DOFs of analytical 

model to the corresponding DOFs that are measured by the sensor array. Another ap-

proach is to expand the incomplete experimental modal information (mode shapes) to the 

full set of DOFs of the analytical model. Clearly, any reduction method can be applied to 

the corresponding expansion problem. 

In this dissertation, the damage parameters are defined in the analytical model which is to 

be updated, thus, any reduction process upon the analytical model would blur this defini-

tion and, hence, the physical meaning of those damage parameters would be compro-

mised. Therefore, this dissertation chooses to apply the latter approach to expand the 

measurements information to the full set of DOFs in the analytical model.  
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Several model expansion/reduction techniques are available, and the most commonly 

used is Guyan reduction (Guyan, 1965), and several modified versions of this approach, 

such as the Improved Reduced System Technique (IRS) (O'Callahan, 1989), and Dynam-

ic Reduction (Paz, 1984). However, in terms of preservation of eigeninformation, the 

System Equivalent Reduction Expansion Process (SEREP) is chosen here considering its 

improved accuracy resulting from preserving the dynamics before and after the process in 

the least-square sense (O'Callahan, Avitabile, & Riemer, 1989). The transformation ma-

trix 𝐓 of this process is given by 

 𝐓 =  
𝚽ma

𝚽sa
 ⋅ 𝚽ma

+  (2.9) 

where 𝚽ma = mode shape components corresponding to measured DOFs (master DOF) 

in the analytical model; and 𝚽sa = mode shape components corresponding to unmea-

sured DOFs (slave DOF) in the analytical model, both of which could be obtained by par-

titioning mode shape matrix 𝚽  of analytical model. (“+” denotes pseudo-inverse). The 

expanded mode shape matrix 𝚽   can be obtained by 

 𝚽 = 𝐓 ⋅ 𝚽exp  (2.10) 

where 𝚽exp = identified mode shapes with DOFs corresponding to sensor measurements. 

After normalizing with respect to mass, the expanded mode shapes 𝚽  can be used in equ-

ation (2.8). However, equation (2.9) indicates that the transformation matrix T  for the 

model expansion process is subject to change during the updating of damage parameter 𝛉 

of the analytical model. This observation is also the reason that in equation (2.6), the ex-

perimental flexibility matrix 𝐅exp  formed by the expanded mode shapes from SEREP in 

equation (2.8), is denoted as a function of the damage parameters 𝛉. Section 2.1.6 will 

consider inclusion of this model updating-expansion interaction into the study. 

2.1.3 Subset Selection 

Another challenge associated with any model updating procedure is the scale of the asso-

ciated optimization problem, which is determined based on the size of the finite element 
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model to be updated. With a high-fidelity model, the corresponding problem is demand-

ing in terms of both the computational power and the optimization algorithm. Subset se-

lection, initially introduced by statisticians as a multivariate regression method, has been 

used for damage localization (Lallement & Piranda, 1990); (Friswell, Penny, & Garvey, 

1997); (Titurus, Friswell, & Starek, 2003). As the number of damage locations is un-

known, subset selection is applied here as a tool to identify the most likely damage loca-

tions, reducing the dimension of the parameter space to facilitate a more efficient optimi-

zation solution.  

Linear subset selection is posed as follows (Friswell, Penny, & Garvey, 1997); (Millar, 

2002): given the set of  𝑛 equations with 𝑝 damage parameters, 

 𝐛 = 𝐒 ⋅ 𝛉 + 𝐞 (2.11) 

where each column vector in 𝐒𝑛×𝑝 =  𝐬1 𝐬2 ⋯ 𝐬𝑝  are the first-order derivatives 

with respect to a parameter related to damage. In this study, the dynamic parameters (ei-

genvalues and mode shapes) are chosen as parameters. Incorporating the mode shapes 

into the selection process can introduce the spatial information without being misled by 

the symmetry of the structure. Other reasons for inclusion of mode shapes are that the 

orthonormal mode shape space will facilitate a Gram-Schmidt orthogonalization de-

scribed subsequently. The sensitivities of the modal eigenvalues and mode shapes are al-

so the basis for the sensitivities of numerous measures of damage. For many objective 

functions used for damage detection purpose, their sensitivities are constructed in terms 

of the sensitivities of these fundamental characteristics. Therefore, in equation (2.11), 

each column vector 𝐬1 in the matrix 𝐒 is the sensitivity vector of dynamic parameter with 

respect to each damage parameter in the vector 𝛉,  which forms the basis for the stepwise 

regression, and vector 𝐛 contains the residuals of changes in these dynamic parameters 

 𝐬𝑖 =  
∂λ1

∂θ𝑖

∂λ2

∂θ𝑖
⋯

∂λm

∂θ𝑖
 
∂𝚽1

∂θ𝑖
 

T

 
∂𝚽2

∂θ𝑖
 

T

⋯  
∂𝚽m

∂θ𝑖
 

T

 

T

 (2.12) 

and 
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 𝐛 =  Δλ1 Δλ2 ⋯ Δλm Δ𝚽1
T Δ𝚽2

T ⋯ Δ𝚽m
T  T  (2.13) 

where 𝑚 = number of modes that have been identified using measured data. Because the 

magnitude of mass normalized mode shape sensitivity is quite different than that of natu-

ral frequencies, a weighting is applied to equation (2.12) to avoid numerical difficulties 

and to account for the numerical importance between sensitivities of the eigenvalues and 

the mode shapes. The weight 𝑤 is calculated here based on the residuals in vector 𝐛 

 𝑤 =
max
𝑗
 Δλ𝑗  

max
𝑖 ,𝑗

 Δ𝚽𝑖𝑗
T  

         𝑗 = 1,⋯ , m (2.14) 

and equations (2.12) and (2.13) will be changed to the following expressions 

 𝐬𝑖 =  
∂λ1

∂θ𝑖

∂λ2

∂θ𝑖
⋯

∂λm

∂θ𝑖
𝑤 ⋅  

∂𝚽1

∂θ𝑖
 

T

𝑤 ⋅  
∂𝚽2

∂θ𝑖
 

T

⋯ 𝑤 ⋅  
∂𝚽m

∂θ𝑖
 

T

 

T

 (2.15) 

and 

 𝐛 =  Δλ1 Δλ2 ⋯ Δλm 𝑤 ⋅ Δ𝚽1
T 𝑤 ⋅ Δ𝚽2

T ⋯ 𝑤 ⋅ Δ𝚽m
T  T (2.16) 

Note that equation (2.11) also includes an error term e , which is essentially comprised of 

higher order modeling errors and/or the noise in the experiments. However, based on re-

gression theory (Fox J. , 1997) if the errors are identically independent Gaussian va-

riables, i.e. 𝐞~N 𝟎,σ2𝐈 , and also independent of 𝐒, the regression coefficient (damage 

parameter) would still result in an unbiased estimate. 

This study adopts a forward selection strategy (Efroymson, 1960); (Millar, 2002) which 

is also referred as „Stepwise Regression‟ in regression analysis field. In this method, the 

correlation is first determined between the residual vector 𝐛 and all sensitivity vectors 𝐬𝑖  

 cos2 ϕ𝑖 =
 𝐛, 𝐬𝑖 

2

 𝐛,𝐛 ⋅  𝐬𝑖 , 𝐬𝑖 
  (2.17) 
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where  ∙,∙  indicates inner product. Among all the 𝑝 sensitivity vectors, the one which 

provides the maximum correlation is interpreted as contributing the most to the residual, 

and thus the corresponding damage parameter is selected as the first member of the dam-

age subset that is to be considered in the subsequent optimization process. This procedure 

is conducted iteratively. Assume θ𝑙  is included in the subset and considered to be a likely 

damaged parameter, to look for the next candidate, one must first orthogonalize the sensi-

tivity matrix 𝐒 and residual vector 𝐛 to the current best sub-basis of the subset. This 

process is achieved by performing Gram-Schmidt orthogonalization 

 𝐬𝑖
𝑘+1 = 𝐬𝑖

𝑘 − proj 𝐬𝑙 , 𝐬𝑖
𝑘   (2.18) 

and 

 𝐛𝑘+1 = 𝐛𝑘 − proj 𝐬𝑙 ,𝐛
𝑘   (2.19) 

where the subscript 𝑖 indicates the index of each damage parameter; the superscript 𝑘 in-

dicates the iteration number; and the projection operator proj ∙,∙  is defined as 

 proj 𝐮,𝐯 =
 𝐮, 𝐯 

 𝐮,𝐮 
∙ 𝐮  (2.20) 

The next candidate is evaluated as described by equation (2.17), but with the newly or-

thogonalized sensitivity vectors 𝐬𝑖
𝑘+1 and residual vector 𝐛𝑘+1 obtained from equations 

(2.18) and (2.19). This process is illustrated in Figure 2.1. 

During the regression process, a hypothesis test is performed to determine the signific-

ance of the current regression coefficient (damage parameter), with the null hypothesis on 

the 𝑘th damage parameter θ𝑘  

 𝐇0: θ𝑘 = 0  (2.21) 

which is judged using 
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 𝐹 =
SSR𝑘−1 − SSR𝑘

SSR𝑘  𝑛 − 𝑘  
  (2.22) 

where SSR𝑘  denotes sum of squares of the residuals of equation (2.11) with k damage 

parameters included, which is written as 

 SSR𝑘 =  𝐛 − θ 𝑖 ⋅ 𝐬𝑖

𝑘

𝑖=1

 

2

,   휃 𝑖 =
 𝐛, 𝐬𝑖 

 𝐬𝑖 , 𝐬𝑖 
 (2.23) 

where  ∙  is the Euclidean norm; and θ 𝑖  is the estimate of 𝑖th possible damage parameter. 

 

Figure 2.1 Illustration of subset selection procedure 

If 𝐹 is larger than 𝐹1−𝛼
𝑛−𝑘  (1 − α percentile of 𝐹-distribution with 𝑛 − 𝑘 degrees of free-

dom), then the hypothesis is rejected, and θ𝑘  must be included in the subset. In the 

process of choosing a significance level α, it is pointed out by Draper et al. (1971) and by 

Pope and Webster (1972) that the next candidate is selected to give the maximum correla-

tion rather than just selecting a random candidate. Thus the statistics of the test in equa-

tion (2.22) do not follow an 𝐹-distribution and this step is not exact. An approximate way 

to determine the significance level α is obtained by treating the 𝐹 ratio in equation (2.22) 

as if it were the maximum of the remaining  𝑝 − 𝑘  independent 𝐹 ratios. Therefore, the 
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 1 − α =  1 − α∗ 𝑝−𝑘   (2.24) 

where the individual significance level α∗ is chosen as 0.01 in this study. 

Although the mode shape matrix space is considered to be orthogonal, another issue re-

ferred to as „collinearity‟ here is present in the regression process (Fox J. , 1997). This 

occurs when the sensitivity of one damage parameter is highly correlated with that of 

other parameters. As a direct consequence of this, certain damage parameters may be 

suppressed by the orthogonalization process applied to the one that is highly correlated. 

In this procedure, collinearity is represented by significant similarities in the sensitivities 

of the dynamic parameters (frequencies and mode shapes) of neighboring finite elements, 

which impairs the robustness of this method, especially in higher dimensional finite ele-

ment models. Therefore, it is proposed that the use of subset selection in combination 

with damage functions to alleviate this limitation, which will be demonstrated numerical-

ly in the sequel. Besides the cut-off error of the higher order terms 𝐞 in equation (2.11), it 

should also be pointed out that the modal information embedded in equation (2.11) is on-

ly provided by the measured or identified modes, which is far from a complete informa-

tion basis. This also infers that the subset selection alone would suffer from errors due to 

„collinearity‟ and „incompleteness‟ and thus has to be used in conjunction with other me-

thods. 

2.1.4 Damage Functions 

The concept of damage functions is based on the shape functions in finite element model-

ing (Teughels, Maeck, & De Roeck, 2002). The purpose is primarily to reduce the size of 

updating parameter set by mapping the original set of damage parameters to another set 

of parameters with a smaller size. Additionally, during the mapping a pre-selected func-

tional basis (damage function) 𝑁𝑖  is chosen to impose a physically meaningful distribu-

tion of potential damage, which improves the condition of the associated optimization 

problem. The damage functions are defined on the element level, and the general parame-

ter space can be mapped from 𝛉 ⟼ 𝐝 by 



40 

 

 𝑑𝑗 =  𝑁𝑖 𝑥𝑗  ⋅ θ𝑖

𝑛

𝑖=1

  (2.25) 

or in matrix form as 

 𝐝𝑛 ×1 = 𝐍𝑛 ×𝑛 ⋅ 𝛉𝑛×1  (2.26) 

where 𝑑𝑗  indicates the original damage parameters which is a stiffness reduction factor 

defined in the section 2.1.5. θ𝑖 = the mapped parameter; 𝑛 = the total number of original 

damage parameters, and 𝑛 = total number of damage functions 𝑁𝑖 , which are defined on 

certain nodes of the damage elements, but sampled at point 𝑥𝑗  (point  𝑥𝑗 ,𝑦𝑗   for two di-

mensional case), which is usually chosen as the centroid of the corresponding element. It 

should be pointed out that the mesh of damage elements does not have to correspond to 

the finite element mesh. To reduce the number of parameters, the damage element mesh 

is generally coarser than that of the FE model and one damage element usually contains 

more than one finite element. The change of parameter space will be reflected in the dis-

cussion of sensitivities regarding the objective function gradient discussed in section 

2.1.6. 

 

Figure 2.2 One and two dimensional linear shape functions 

In the work by (Teughels, Maeck, & De Roeck, 2002), high-order hierarchical shape 

functions were used as damage functions. To keep the overall number of parameters low, 

here conventional linear shape functions are used herein for both one and two dimension-

al (see Figure 2.2). The shape functions are expressed in terms of local coordinates 

ξ ∈  −1,1  as 



 









41 

 

 𝑁𝑖 =
1 + ξ0

2
       ξ0 = ξ𝑖 ⋅ ξ      𝑖 = 1,2 (2.27) 

where ξ𝑖  is the local coordinate of the current node 𝑖. In the case of two dimensions, the 

shape functions are expressed as 

 𝑁𝑖 =
 1 + ξ0  1 + η0 

2
       ξ0 = ξ𝑖 ⋅ ξ     η0 = η𝑖 ⋅ η    𝑖 = 1,2,3,4 (2.28) 

2.1.5 Trust-region Optimization Technique 

If the goal is the updating of a high-fidelity structural model with a large number of 

DOFs and elements, then the associated set of damage parameters to be updated in the 

optimization procedure (equations (2.5) and (2.6)) yields a high-dimensional parameter 

space, even with subset selection. To solve this large-scale optimization problem, and 

obtain satisfactory convergence, a trust-region based optimization method is applied. In 

this study, the related code implemented in the MATLAB optimization toolbox has been 

used. A trust-region (More, 1983) is a high dimensional ellipsoid in hyperspace, within 

which quadratic programming can be used as a subproblem to replace the original nonli-

near optimization problem stated in equation (2.5). The general formulation at step 𝑘 can 

be written  

 

min
∆𝛉𝑘

π 𝛉𝑘 + ∆𝛉𝑘 

= 𝚷 𝛉𝑘 + 𝛁𝚷 𝛉𝑘 T ⋅ ∆𝛉𝑘 +
1

2
∆𝛉𝑘

T
⋅ 𝛁2𝚷 𝛉𝑘 ⋅ ∆𝛉𝑘  

(2.29) 

subject to 

  ∆𝛉𝑘 ≤ δ𝑘 , “trust region” (2.30) 

This formulation is a constrained optimization problem, and only holds within a small 

“trust region” with a radius δ𝑘 . The solution of the subproblem to determine the step ∆𝛉𝑘  

is challenging. Fortunately, if the Newton step solution (Newton point) is within the trust 

region, then solution is easily given as  



42 

 

 ∆𝛉 N.P. 
𝑘 = −𝐇𝑘

−1 ⋅ 𝛁𝚷 𝛉𝑘  (2.31) 

where 𝐇𝑘 = 𝛁2𝚷 𝛉𝑘 = Hessian matrix at current point 𝛉𝑘 . But in most cases, the New-

ton point (N.P.) is outside of the trust-region, and therefore, practical trust region me-

thods attempt to find an approximate path to the N.P. Such a path is called a dogleg path 

because of its shape, borrowing the name from the game of golf (Powell, 1975). A dogleg 

path connects through a series of linear functions, the current point 𝛉𝑘 , the Cauchy point 

(C.P.) which minimizes of the subproblem [equation (2.29)] in the steepest decent direc-

tion, and the N.P. which is the point resulting from the step ∆𝛉 N.P. 
𝑘  in equation (2.31) 

(which is also always further from 𝛉𝑘  than from the C.P.). In Figure 2.3, the Cauchy 

point is defined as the point resulting from a step ∆𝛉 C.P. 
𝑘  which is expressed as 

 ∆𝛉 C.P. 
𝑘 =

 
 
 

 
 −

 𝛁𝚷 𝛉𝑘  2

𝛁𝚷 𝛉𝑘 T ⋅ 𝐇𝑘 ⋅ 𝛁𝚷 𝛉𝑘 
𝛁𝚷 𝛉𝑘        if  ∆𝛉 C.P. 

𝑘  < δ𝑘  

−
δ𝑘

 𝛁𝚷 𝛉𝑘  
𝛁𝚷 𝛉𝑘                      otherwise

  (2.32a,b) 

 

Figure 2.3 Dogleg trust-region search 

Hence, if  ∆𝛉 C.P. 
𝑘  ≥ δ𝑘  then the method would take a step in the steepest decent direc-

tion [equation (2.32b)]. If  ∆𝛉 N.P. 
𝑘  ≤ δ𝑘 , then next step would be a full Newton step 

[equation (2.32a)]. For the more general case  ∆𝛉 C.P. 
𝑘  < δ𝑘 <  ∆𝛉 N.P. 

𝑘  , the next step 



steepest 

decent
N.P.

C.P.





trust-region
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would aim for the boundary point at which the line linking the C.P. and N.P. intersect 

(see Figure 2.3). In this case, the increment can be expressed linearly using a parameter 𝑡 

as 

 ∆𝛉𝑘 = ∆𝛉 C.P. 
𝑘 + 𝑡 ∙  ∆𝛉 N.P. 

𝑘 − ∆𝛉 C.P. 
𝑘  , 𝑡 ∈  0,1  (2.33) 

where 𝑡 is determined by solving for the positive root of the quadratic equation 

  ∆𝛉 C.P. 
𝑘 + 𝑡 ∙  ∆𝛉 N.P. 

𝑘 − ∆𝛉 C.P. 
𝑘   

2
= δ𝑘

2  (2.34) 

The parameter δ𝑘  is referred as the trust-region radius and is adjusted in each iteration by 

checking the quality of the subproblem in equation (2.29) representing the original for-

mulation in equations (2.5) and (2.6). A ratio is used to indicate how well the subproblem 

represents the original equation, as 

 𝜌𝑘 =
𝚷 𝛉𝑘 − 𝚷 𝛉𝑘 + ∆𝛉𝑘 

𝚷 𝛉𝑘 − π 𝛉𝑘 + ∆𝛉𝑘 
 (2.35) 

Specifying the constants 0 < 𝛼 < 𝛽 < 1, as indicated by (Dennis & Schnabel, 1996) and 

implemented in MATLAB as well, a good choice is α = 0.25 and β = 0.75. The radius 

δ𝑘  is updated according to the following three cases: 

 𝜌𝑘 ≥ β: In this case, the subproblem model has good agreement with the original 

problem, the trust region radius could be expanded as δ𝑘
new = 2 ∙ δ𝑘

old , and then 

the new trust region is used to recalculate the current step; 

 α ≤ 𝜌𝑘 ≤ β: The current agreement is accepted and the radius will remain un-

changed; 

 𝜌𝑘 ≤ α: This indicates the subproblem formulation cannot be trusted for a region 

specified by radius δ𝑘 . Hence it will be reduced and recalculated in order to ob-

tain a valid step, i.e., δ𝑘
new = δ𝑘

old 2 .  

In the MATLAB optimization toolbox, the previous procedures are implemented and au-

tomated. The dogleg trust-region method is considered to be a robust method to solve 
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such large-scale FE model updating problems. However, when using the function pro-

vided by MATLAB, the gradient and Hessian information must be supplied, as explained 

in section 2.1.6. 

2.1.6 Gradient and Hessian of Objective Function 

Although numerical approaches using finite difference to approximate gradient deriva-

tives have been widely used by other researchers, the numerical behavior of most optimi-

zation techniques is considerably more robust when the true gradient is used. In MAT-

LAB, the gradient must be supplied to invoke the trust-region based optimization func-

tions expressed in equations (2.29) and (2.30). The gradient may be calculated by directly 

taking the derivatives of 𝚷 in equation (2.6). However, as mentioned above, the use of 

the model expansion/reduction process and damage functions change the parameter space, 

influencing the gradient of the objective function 𝚷. The necessary modifications will be 

discussed herein. 

Based on equations (2.5) and (2.6) and the fact that the parameter set 𝛉 is mapped from 

the original parameter set 𝐝 using damage functions in equation (2.26), the derivative of 

𝚷 with respect to 𝛉 can be expressed as (if 𝛁𝚷 is a column vector) 

 𝛁𝚷T =
𝜕𝚷T

𝜕𝛉
=
𝜕𝚷T

𝜕𝐝
⋅
𝜕𝐝

𝜕𝛉
 (2.36) 

where 𝜕𝐝 𝜕𝛉  is known as the Jacobian matrix. From matrix equation (2.26), this term is 

calculated as 

 
𝜕𝐝

𝜕𝛉
= 𝐍𝑛 ×𝑛  (2.37) 

Therefore, to complete equation (2.36),  𝜕𝚷 𝜕𝐝  must be calculated. From equation (2.5), 

taking the derivative of  𝚷 with respect to the 𝑖th component of 𝐝 would yield  

 
𝜕𝚷

𝜕𝑑𝑖
=

1

 𝐄0 Fro
2 ⋅

𝜕 𝐄 Fro
2

𝜕𝑑𝑖
 (2.38) 
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where 𝐄0 denotes 𝐄 𝛉0  which is a constant. Based on the definition of the Frobenius 

norm, equation (2.38) could be rewritten as 

 
𝜕𝚷

𝜕𝑑𝑖
=

1

 𝐄0 Fro
2 ⋅ tr  

𝜕 𝐄T ⋅ 𝐄 

𝜕𝑑𝑖
  (2.39) 

where tr ∙  is the trace operator. From equations (2.6), (2.7) and (2.8), it is obvious that 𝐄 

as well as 𝐅ana  and 𝐅exp  are symmetric matrices. Therefore, 

 tr  
𝜕 𝐄T ⋅ 𝐄 

𝜕𝑑𝑖
 = 2 ⋅ tr  𝐄 ⋅

𝜕𝐄

𝜕𝑑𝑖
  (2.40) 

Now the goal is to solve for 𝜕𝐄 𝜕𝑑𝑖 , which can be expressed as 

 
𝜕𝐄

𝜕𝑑𝑖
=
𝜕𝐅ana

𝜕𝑑𝑖
−
𝜕𝐅exp

𝜕𝑑𝑖
 (2.41) 

The calculation of 𝜕𝐅ana 𝜕𝑑𝑖  is derived in Appendix A using matrix calculus. The calcu-

lation of 𝜕𝐅exp 𝜕𝑑𝑖  is more involved because the model expansion as well as the mass 

normalization processes are applied to the mode shapes to form 𝐅exp  in equation (2.8). 

The details of the derivation are included in Appendix B. Based on the formulations [eq-

uations (A.2) and (B.1)] provided in the Appendices, once the damage element mesh 

scheme which provides constant damage functions 𝐍𝑛 ×𝑛 , is decided, the gradient of the 

objective function  𝜕𝚷 𝜕𝛉  can be calculated using equation (2.36). 

After providing the gradient information to the MATLAB function, the trust-region opti-

mization scheme can be performed. However, as indicated in equation (2.29), the Hessian 

matrix 𝐇𝑘 = 𝛁2𝚷 𝛉𝑘  is also required. A finite difference approximation to the Hessian 

matrix is possible, but should be avoided because every perturbation step on the damage 

parameter would cause the program to rebuild the FE model to obtain a new stiffness ma-

trix, which is extremely time-consuming. Alternatively, the direct calculation of the Hes-

sian matrix is even more involved than the gradient. Therefore, an effective means to ap-

proximate Hessian matrix must be applied. Undoubtedly, the most successful secant me-
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thod in the optimization literature is the symmetric positive definite Broyden-Fletcher-

Goldfarb-Shanno method or, in short, BFGS Hessian updating method (Nocedal, 1992). 

It can be expressed by the updating scheme equation as 

 𝐇𝑘+1 = 𝐇𝑘 +
𝐲𝑘 ⋅ 𝐲𝑘

T

𝐲𝑘
T ⋅ ∆𝛉𝑘

−
𝐇𝑘 ⋅ ∆𝛉

𝑘 ⋅  ∆𝛉𝑘 T ⋅ 𝐇𝑘

 ∆𝛉𝑘 T ⋅ 𝐇𝑘 ⋅ ∆𝛉𝑘
 (2.42) 

where 𝐲𝑘 = 𝛁𝚷 𝛉𝑘+1 − 𝛁𝚷 𝛉𝑘 . The initial estimate 𝐇0of the Hessian is usually taken 

to be the identity matrix 𝐈. This approach is used herein. 

2.1.7 Eigenpair Sensitivities 

As explained previously, to obtain the gradient and Hessian, sensitivities of the eigenva-

lues and eigenvetors (mode shapes) are required, i.e., 𝜕𝚲 𝜕𝐝  and 𝜕𝚽 𝜕𝐝 . In this study, 

the expressions derived by (Fox & Kapoor, 1968) are used. In terms of the 𝑖th original 

damage parameter 𝑑𝑖 , before conducting the damage function procedure, the sensitivities 

are given as 

 
𝜕λ 𝑗

𝜕𝑑𝑖
= 𝛗 𝑗

T ⋅
𝜕𝐊

𝜕𝑑𝑖
⋅ 𝛗 𝑗  (2.43) 

and 

 
𝜕𝛗 𝑗

𝜕𝑑𝑖
=  

𝛗 𝑘
T ⋅

𝜕𝐊
𝜕𝑑𝑖

⋅ 𝛗 𝑗

λ 𝑗 − λ 𝑘
⋅ 𝛗 𝑘

𝑛

𝑘=1;𝑘≠𝑗

 (2.44) 

where λ 𝑗 =  𝑗th eigenvalue located at the diagonal of matrix 𝚲 , 𝛗 𝑗  is the 𝑗th mode shape 

vector in matrix 𝚽 ,  and 𝑛 indicates the number of modes that need to be considered in 

calculating the sensitivities. Equations (2.43) and (2.44) are only valid if the mode shapes 

are mass normalized and the mass matrix 𝐌 of the analytical model can be assumed to be 

constant during the model updating process, which is one of the assumptions made in this 

study.  
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To calculate the stiffness sensitivities 𝜕𝐊 𝜕𝑑𝑖  equations (2.43) and (2.44), first the defi-

nition of damage parameter 𝑑𝑖  must first be determined. The damage parameter 𝑑𝑖s are 

the original parameters that are physically related to damage in the analytical model. 

Damage is typically realized by a reduction of certain material constants, such as the elas-

tic modulus 𝐸𝑖   and/or the shear modulus 𝐺𝑖  for the 𝑖th element, i.e. 

 𝐸𝑖 =  1 − 𝑑𝑖
𝐸 ⋅ 𝐸0 (2.45) 

and 

 𝐺𝑖 =  1 − 𝑑𝑖
𝐺 ⋅ 𝐺0 (2.46) 

where 𝐸0 and 𝐺0 are the initial undamaged moduli. 

In the 1D case (for instance, Euler-Bernoulli beam element), the reduction  1 − 𝑑𝑖  can 

be extracted from the elemental stiffness matrix and applied to the entire elemental stiff-

ness matrix, i.e., 𝐊e =  1 − 𝑑𝑖 ∙ 𝐊0, with an undamaged elemental stiffness 𝐊0. In the 

2D plane stress element case, both equations (2.45) and (2.46) are applied to form the 

elemental stiffness matrix, and therefore there are two independent damage parameters 

(𝑑𝑖
𝐸  and 𝑑𝑖

𝐺 ) associated with one element.  The following formula could be obtained 

based on the definition above 

 
𝜕𝐊e

𝜕𝑑𝑖
=

 
 

 
−𝐊0

 𝐁T
𝜕𝐃

𝜕𝑑𝑖
𝐁 ⋅ 𝑑𝑥𝑑𝑦

𝑥 ,𝑦

  (2.47a,b) 

It is noted that equation (2.47a) is applied for the 1D beam element and equation (2.47b) 

is applied for the 2D plane stress element, which is calculated by numerical integration 

using a material constitutive matrix based on orthotropic stress-strain law as 
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 𝐃 =
1

Δ
⋅  

𝐸1
e 𝜈12 ⋅ 𝐸2

e 0

𝜈21 ⋅ 𝐸1
e 𝐸2

e 0
0 0 Δ ⋅ 𝐺

 , with Δ = 1 − 𝜈12 ⋅ 𝜈21  (2.48) 

where, 𝜈𝑖𝑗 = Poisson‟s ratio corresponds to a contraction in direction 𝑗 when an extension 

is applied in direction 𝑖, and they are constrained by the reciprocal condition 𝜈12 ⋅ 𝐸2
e =

𝜈21 ⋅ 𝐸1
e . The material constants to be updated are the shear modulus 𝐺, the elastic moduli 

of two orthogonal material directions 1 and 2 as 𝐸1
e  and 𝐸2

e , all of which are reduced by 

the damage parameters as in the equations (2.45) and (2.46). Herein 𝐸1
e  and 𝐸2

e  are as-

sumed to be identical. Therefore, the two independent damage parameters for each ele-

ment correspond to the shear modulus 𝐺, and 𝐸1
e  and 𝐸2

e . Using the formulation intro-

duced in this section, the sensitivities of the eigenvalues and eigenvetors (mode shapes)  

𝜕𝚲 𝜕𝐝  and 𝜕𝚽 𝜕𝐝  are obtained to calculate the gradient and Hessian required in the 

previous section. 

2.2 Development of Nonlinear FE Model Updating 

Due to its simplicity, the material models applied in linear FE model updating will not be 

discussed in a separated section, but rather briefly introduced in the development of the 

numerical examples in  CHAPTER 3. The nonlinear models discussed in this section are 

used in nonlinear FE analysis. They are derived from experimental study and the expres-

sion of the models are based on loading/unloading rules observed from the experiments 

(Kent, 1969); (Kent & Park, Flexural Members with Confined Concrete, 1971); (Scott, 

Park, & Priestley, 1982). Modifications to these nonlinear models are made to balance the 

accuracy and computational efficiency, for the purpose of nonlinear model updating 

strategy described in section 2.2.4. 

2.2.1 Concrete Material Model 

The predominant stress state of many RC structural elements, such as panels and shear 

walls, is that of plane stress. Many promising concrete constitutive models have been 

proposed for the nonlinear finite element analysis over the past twenty years (ASCE 

Committee 447, 1994); (Ayoub & Filippou, 1998); (Palermo & Vecchio, 2007). Among 



49 

 

these concrete models, a constitutive model used in OpenSees (Mazzoni, McKenna, Scott, 

& Fenves, Sep. 2006) “Concrete 02” provides sound accuracy and meanwhile has eco-

nomical computational consumption, and thus has been adopted herein. This model de-

scribes the concrete stress-strain relation under an arbitrary cyclic strain history. The de-

tailed description of the model can be found in (Mohd Yassin, 1994), and certain distinct 

features of the model are described herein. 

The model includes an envelope curve and companion unloading/reloading rules to cap-

ture the behavior of plain concrete subjected to cyclic loading condition. As shown in 

Figure 2.4, the envelop curve is characterized by several key points, namely OAB for the 

tension regime and OKM for the compression regime. With these key points defined by 

the users, the envelope curve is simply determined by connecting them using straight 

lines. The only nonlinear branch in the envelope curve (actually in this entire concrete 

model) is the region OA, which is defined as (Kent, 1969); (Kent & Park, 1971); (Scott, 

Park, & Priestley, 1982) 

  σc = fc
′  2  

εc

εc0
 −  

εc

εc0
 

2

  (2.49) 

where σc , εc = the concrete stress and strain; fc
′ = concrete strength; and εc0 = strain cor-

responding to fc
′ . In the tension envelope curve OKM, the tension stiffening effect is de-

fined by a straight line KM with a slope given as tension stiffening modulus Ets . It is 

noted that the envelope curve implemented herein is a simplified version of the original 

model in (Mohd Yassin, 1994), where the concrete strength is adjusted by taking into ac-

count the confinement by the stirrup-ties. 
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Figure 2.4 Concrete Material Model  

The cyclic unloading and reloading behavior is represented again by a set of straight lines. 

Figure 2.4 shows that hysteretic behavior occurs under both tensile and compressive 

stress. In the compression region, as the value of minimum strain (εmin ) increases, there 

is a successive degradation of stiffness in both the unloading and reloading lines in the 

model. The degradation of stiffness is determined by letting all the unloading lines con-

verge to a common point R in Figure 2.4. Point R is determined by intersecting the tan-

gent to the compression envelope curve at the origin O with the unloading line starting 

from point B with slope Er  determined from experiments. The strain and stress at point R 

(εr ,σr) are given as 

 εr =
σcu − Erεcu

Ec − Er
 (2.50) 

 σr = Ecεr  (2.51) 

where Ec = concrete elastic modulus; σcu , εcu = concrete stress and strain at ultimate 

point B, respectively. In the original model implemented in OpenSees, the unloading and 

reloading lines do not coincide and form a “triangular loop” (see the red dash lines in 
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Figure 2.4). In this study, in order to remove the ambiguity of the zero-load crossing 

stiffness to facilitate the model updating, it is assumed that the unloading and reloading 

lines coincide with each other to remove the ambiguity, i.e., different stiffness values in 

unloading versus reloading process. Therefore, at the zero-load crossing point, the instan-

taneous stiffness is given as 

 Eci
c =

σr − σmin

εr − εmin
 (2.52) 

where εmin = minimum strain the current model has ever experienced; and σmin = stress 

corresponding to εmin . 

The tensile behavior of the model, as mentioned earlier, takes into account tension stif-

fening and the degradation of the unloading and reloading stiffness for increasing values 

of maximum tensile strain after initial cracking. As shown in Figure 2.4, the tensile stress 

can occur anywhere along the strain axis, either as a result of initial cracking or as a result 

of reloading after an unloading from a compressive state. In the latter case, a tensile stress 

occurs under a compressive strain. In Figure 2.4, if point N is the current zero-load cross-

ing point from compression to tension, then the reloading curve is determined by con-

necting point N and L with a straight line. The strain and stress of point L (εL ,σL) are 

given by 

  εL = εn + εmax  (2.53) 

 σL = ft  1 +
Ets

Ec
 − Etsεmax  (2.54) 

where ft = concrete tensile strength; and εmax =  the maximum strain difference between 

tensile strain and zero-load crossing point, in this case, the point N. Before the initial 

cracking, εmax  is equal to ft Ec . Therefore, the instantaneous stiffness at zero-load cross-

ing point is given as 
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 Eti
c =

σL

εmax
 (2.55) 

This concrete model is relatively economical in terms of the amount of memory required 

to record the past stress-strain history. The historical variables in the present model are 

listed as follows: 

 strain and stress (εc ,σc)  at the point corresponding to the last loading state; 

 minimum strain εmin  the current model has ever experienced; and 

 maximum strain difference εmax  between tensile strain and zero-load crossing 

point. 

It is noted that, unlike other key points that are pre-defined by users, key points D and L 

are recorded during the execution of the model to represent the states with minimum and 

maximum (difference) strains. These two points, as explained above, are used to recog-

nize the historical variables for the hysteresis of the concrete model. 

2.2.2 Reinforcing Steel Material Model 

As another essential component in RC structure, reinforcing steel model also has drawn 

intensive attention from researchers. There are many available reinforcing steel models 

developed to capture the fundamental characteristic of reinforcing steel behavior. In this 

study, the OpenSees (Mazzoni, McKenna, Scott, & Fenves, Sep. 2006) “Hysteretic un-

iaxial model” is selected instead of Chang and Mander‟s model (Chang & Mander, 1994) 

as the reinforcing steel model. This model is chosen to represent the smeared reinforcing 

steel material behavior because it provides good convergence (So, Harmon, & Dyke, 

2010), even though it simplifies the steel material behavior with multiple straight lines as 

shown in Figure 2.5. 

This model is also defined by an envelope curve and unloading/reloading rules. The 

envelope curve is defined by key points OABC and ORST. In Figure 2.5, a sample load-

ing path is shown in red to explain the associated hysteresis of the model under cyclic 

loading. It is noted that, the unloading line again coincides with the reloading line to give 

a uniform zero-load crossing instantaneous stiffness. However, the unloading (reloading) 
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stiffness is decreasing as the maximum (or minimum for compression region) strain in-

creases. This relationship is given as 

 Eti
s = μt

β
E1p , μt = min ε1p εmax , 1  (2.56) 

and for the compression region, a similar relationship is given as 

 Eci
s = μc

β
E1n , μc = min ε1n εmin , 1  (2.57) 

where E1p , E1n = initial elastic modulus under tensile and compressive loading condi-

tions, respectively; εmax , εmin = maximum and minimum strains that the model has ever 

experienced; and β = a predetermined material constant. 

 

Figure 2.5 Reinforcing Steel Material Model  

The model shown in Figure 2.5 is actually a simplified version of the original OpenSees 

model. The simplification results in the removal of certain complex behavior, as will be 

explained further in section 2.2.4, to keep the number of the parameters in the model in a 

minimum amount. This simplification can facilitate the goal of nonlinear updating of the 
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model. In the original model, the historical variables being updated in each solution step 

include the following: 

 strain and stress (εc ,σc)  at the point corresponding to the last loading state; 

 minimum and maximum strain εmin , εmax  the current model has ever experienced; 

 last zero-load crossing strains at compression and tension regions εni , εpi ; 

 unloading or reloading indicator of the last step; and 

 absorbed energy of the model ED . 

In the simplified model, the variables as εni , εpi  and ED  are removed. This simplification 

process makes the model updating described in section 2.2.4 possible for the nonlinear 

FE model, at the expense of neglecting some of the complex behavior of RC structures. 

2.2.3 Plane Stress Reinforced Concrete Material Model 

With the aforementioned concrete and reinforcing steel material models, a RC model de-

veloped by (So, 2008);(So, Harmon, & Dyke, 2010) is used in this study. The planar RC 

model is treated as a composition of orthotropic concrete material together with contribu-

tion from smeared reinforcing steel. The RC model used here has the following compo-

nents: 

1. Each RC material model contains two orthogonal uniaxial concrete models and 

two orthogonal uniaxial reinforcing steel models (see Figure 2.6).  

 

Figure 2.6 A typical RC panel (with crack just developed) 

𝛉𝐬 

𝛉𝐜 

y 

x 
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2. Uniaxial stress-strain relationships in the axes of orthotropy for both concrete and 

reinforcement. The adopted uniaxial concrete model is modified from (Mohd 

Yassin, 1994), as indicated in Figure 2.4. The uniaxial reinforcing steel model is 

modified from OpenSees 'Hysteretic uniaxial model', as shown in Figure 2.5. 

3. A fixed crack model, i.e., the axes of orthotropy are fixed once a crack has devel-

oped in one of the principal strain directions. 

4. The definition of material stiffness matrix. Concrete is treated as an orthotropic 

material whose axes of orthotropy coincide with the principal directions of total 

strain. Therefore, the stress-strain relationships are defined in the axes of ortho-

tropy and are then transformed to the global reference system by a rotation trans-

formation. The global stress-strain relationship is defined as 

 𝐝𝛔 = 𝐃𝐆 ∙ 𝐝𝛆  (2.58) 

where 𝐝𝛔 = incremental stress vector; 𝐝𝛆 = incremental strain vector; and the global tan-

gent material stiffness matrix 𝐃𝐆 is derived from local concrete stiffness matrix 𝐃𝐂𝐋 and 

local steel stiffness matrix 𝐃𝐒𝐋 by transforming them to the global reference axes and 

then summing up 

 𝐃𝐆 = 𝐓 𝛉𝐜 
𝐓𝐃𝐂𝐋𝐓 𝛉𝐜 + 𝐓 𝛉𝐬 

𝐓𝐃𝐒𝐋𝐓 𝛉𝐬   (2.59) 

where 𝐓 ∙  = rotation transformation matrix; and 𝛉𝐜  = material angle of concrete, which 

coincide the principal strain direction until crack develops; 𝛉𝐬 = material angle of steel, 

which is fixed during the simulation and dependent on the reinforcement design (see Fig-

ure 2.6); and 𝐃𝐂𝐋= concrete local material stiffness with the form 

 𝐃𝐂𝐋 =  
Ec1 0 0
0 Ec2 0
0 0 G

   (2.60) 

where Ec1 and Ec2 = concrete tangent moduli in local material directions 1 and 2, respec-

tively; and G = shear modulus which considers a constant shear retention factor β. This 

yields the following expression for G 
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 G =
β ⋅ Ec

2 1 + 𝜈 
 (2.61) 

where Ec  = concrete elastic modulus; and 𝜈 = poisson ratio. A constant β = 0.1 is used 

once the crack is developed. 

Similarly, for reinforcing steel, the local material stiffness matrix 𝐃𝐒𝐋 is given as 

 𝐃𝐒𝐋 =  
r1 ∙ Es1 0 0

0 r2 ∙ Es2 0
0 0 0

  (2.62) 

where Es1 and Es2 = steel tangent moduli in local material directions 1 and 2, respective-

ly; and r1 and r2 = reinforcement ratios in  local material directions 1 and 2, respectively. 

The above essential components provide a simplified nonlinear RC material model for 

later nonlinear FE model updating purposes. Based on the descriptions of the concrete 

and reinforcing steel material models in sections 2.2.1 and 2.2.2, it can be seen that this 

RC model attempts to represent the fundamental hysteretic behavior of RC panels and 

walls. A numerical example in CHAPTER 4 is considered to demonstrate the capability 

of the model in capturing primary damage mechanism and hysteretic behavior of a RC 

wall structure. Certain modifications that have been made during the development of this 

model are to improve the computational efficiency and keep a minimal number of model 

parameters without losing significant accuracy. The next section will explain the nonli-

near FE model updating method associated with this model, and why these modifications 

to the model are made. 

2.2.4 Nonlinear FE Model Updating Strategy 

The goal of applying nonlinear FE model is to capture the salient behavior of civil struc-

tures as they undergo damage process. Therefore, prior to the development of the model 

updating method, it is important to investigate the possible damage mechanisms, and to 

reveal which types of damage can or cannot be updated. The following damage rules 

(Lowes & Mitra, 2004) are plotted in Figure 2.7 to Figure 2.9.: i) unloading stiffness de-

gradation; ii) reloading stiffness degradation; and iii) strength degradation. Figure 2.7 to 
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Figure 2.9 illustrate these damage rules using several general hysteretic load-

displacement plots. The blue solid curve defines the envelope of the hysteresis, and the 

curve in red indicates a sample loading history. 

The complex nonlinear behavior demonstrated in Figure 2.7 to Figure 2.9 clearly impose 

the challenges to the associated model updating task. It is difficult to consider all the non-

linear behavior in the model updating process at once. So far, the proposed updating 

strategy only considers the first type of damage --- unloading stiffness degradation as the 

major damage indicator. It has been recognized that in some classes of structures, the de-

gradation of the capacity of the structure occurs with a change in the zero-load crossing 

stiffness(Palermo & Vecchio, 2004); (Brown & Kunnath, 2004); (Mansour & Hsu, 2005). 

Also, the updating of zero-load crossing stiffness can be achieved in the same manner as 

the linear FE model updating, but with the modal information obtained by low-level am-

bient vibration near the unloading zero-load crossing state.  

 

Figure 2.7 Unloading stiffness degradation 
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Figure 2.8 Reloading stiffness degradation 

A diagram providing an overview of the proposed methodology is shown in Figure 2.10. 

For updating, the damage parameters of the nonlinear concrete material model selected 

for use in this study must be related to the stiffness at the zero-load crossing point, and 

that mathematical relationship is denoted as the damage updating relationship (DUR). In 

general, such a relationship would be developed and validated to describe this relation-

ship a priori for a particular class of structure. This relationship, in conjunction with the 

most effective techniques for development of a structural identification model (SIM) and 

parameter identification technique (PIT), will yield an updated FE model. The updated 

model would then be used for the evaluation or analysis of future structural performance. 

And it is worth pointing out that, the way to update the zero-load crossing stiffness in a 

nonlinear FE model is the same as updating the linear stiffness in a linear FE model up-

dating. 
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Figure 2.9 Strength degradation 

 

Figure 2.10 Diagram Showing the Typical Implementation of the Proposed Method 

As the zero-load crossing stiffness being chosen as the updating property, it is necessary 

to associate the historical variables in the material models with the zero-loading crossing 

stiffness [see equations (2.52), (2.55), (2.56), (2.57)]. This fact also implies that, certain 

complex behavior, such as strength degradation, pinching, bond-slip relationship, etc., 

which cannot be directly linked to the zero-load crossing stiffness, will not be considered 
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in this model updating framework. The simplifications in the concrete and reinforcing 

steel models are made for the same reason. 

2.3 Development of Real-time Nonlinear Model Updating 

While most vibration based SHM techniques rely on modal identification in the frequen-

cy domain, the data collected usually excludes the information directly related to the 

damage events due to the linear dynamical system assumption. This fact implies that the 

damage investigation usually commences after the damage event without the information 

during the event. On the other hand, time-domain based techniques are capable of analyz-

ing the data on-line or even in real-time, during the damage events. This possibility is ap-

pealing, because sometimes the goal of health monitoring is not only to estimate the 

damage locations or severities, but also to provide such estimates in a prompt and effi-

cient manner so the information can be used for making time sensitive decisions, for 

structural control or for emergency evacuations. 

In recent years, many techniques have been developed towards the goal of nonlinear hys-

teretic model identification, including least squares estimation (LSE), the extended Kal-

man filter (EKF), the unscented Kalman filter (UKF) and particle filter (PF, also known 

as sequential Monte Carlo methods). Meanwhile, in control systems engineering, high-

gain (HG) techniques have also been reported to be efficient in state estimation.  Re-

searchers have further improved some methods to include adaptive feature in detecting 

parameter changes(Yang, Lin, Huang, & Zhou, 2006);(Mohamed & Schwarz, 1999).  

In vibration based SHM system, acceleration data is the most commonly used  and readi-

ly available measurement. However, the application of LSE (or its adaptive version) 

usually requires the velocity and/or displacement measurements as well, depending on 

the definition of the problem. Even though it is theoretically possible to obtain the veloci-

ty and displacement through numerically integrating acceleration, there is special atten-

tion to be given in practice considering the noise contamination of the acceleration data 

would impair the quality of numerical integration. The PF method, which can be applied 
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to dynamic system with non-Gaussian states, requires a large number of samples during 

the estimation. This requirement usually implies higher computational demand, which 

renders its real-time implementation difficult. 

Both EKF and UKF are extensions of widely used stochastic observer, Kalman filter, 

which is used to estimate the states with Gaussian joint distribution in linear dynamical 

system. With the same Gaussianity assumption, EKF and UKF are able to deal with non-

linear dynamic system. EKF extends the scope of Kalman filter to nonlinear system by 

approximating the Gaussian joint distribution of states and measurements using a Taylor 

series expansion. Compared to UKF, EKF is a computationally efficient estimation me-

thod, since there is no sampling involved. It has a wide variety of applications in map 

matching and navigation systems, such as global positioning systems (GPS) (Zhao, 

Ochieng, Quddus, & Noland, 2003). Its drawbacks also lie in the accuracy of the series 

expansion. Jacobian matrices (and Hessian matrices with second order filter) may not al-

ways exist for certain nonlinear systems. It also may lead to poor performance by approx-

imating a highly nonlinear dynamical system using a linear (or quadratic for second order 

filter) function. These disadvantages limit its usage in highly nonlinear systems. Detailed 

information on EKF is presented in section 2.3.1. 

Unlike EKF using Taylor series expansion to approximate the nonlinear system functions, 

UKF directly approximate the Gaussian joint distribution of states and measurements us-

ing a chosen set of sample points, named sigma points. The set of sigma points are de-

termined before estimation, based on the dimensions of the dynamical system. Once cho-

sen, the number and locations of the sigma points are fixed during the estimation. As will 

be shown in section 2.3.3, the way that the sigma points are generated guarantees the 

mean and covariance of the distribution of state exactly. And the moments of the distribu-

tion of transformed variables can be estimated by propagating the sigma points using the 

nonlinear system functions. UKF was first proposed by Julier and Uhlman (Julier, 

Uhlrnann, & Durrant-Whyte, June 1995) and further improved (Julier S. , 2002 ). Since 

UKF does not require to evaluate Jacobian and Hessian matrices, and has superior accu-

racy to EKF in terms of approximating the statistics of highly nonlinear systems, it is 
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suitable for estimate fairly complex dynamical systems. UKF also has the advantage over 

PF by sampling on deterministically determined sigma points, which provides computa-

tional efficiency for possible real-time applications. Recently, there have been a few suc-

cessful UKF applications in estimating nonlinear hysteretic systems (Wu & Smyth, 2007); 

(Wu & Smyth, 2008); (Chatzi & Smyth, 2008); (Chatz, Smyth, & Masri, 2010). The po-

tential of its performance in nonlinear system estimation and the weak restrictions on the 

range of application has made UKF the candidate of the experimental study in this disser-

tation. The algorithm is shown in section 2.3.3. 

The HG observer is inherently different with the stochastic filters introduced above, as it 

does not assume any random distribution of the states or measurements. A HG observer 

is constructed based on standard Lyapunov arguments (Gauthier, Hammouri, & Othman, 

1992). With a properly chosen gain, the error in the estimation tends to zero exponential-

ly fast. Therefore, it is sometimes referred as “exponential nonlinear observer”. And the 

formulation of a simple HG observer is given in section 2.3.4. 

2.3.1 Nonlinear Kalman Filters 

Consider a nonlinear dynamical system to be updated in the following general formula-

tion
 

 𝐱 = 𝐅 𝑡, 𝐱 𝑡 ,𝐮 𝑡 ,𝐰 𝑡   (2.63) 

with the measurement equation at 𝑡 = 𝑘 ⋅ ∆𝑡 given as 

 𝐲𝑘 = 𝐡 𝐱𝑘 ,𝐮𝑘 , 𝐯𝑘  (2.64) 

where 𝐟 and 𝐡 are nonlinear functions; ∆𝑡 is the sampling period; 𝐱𝑘  and 𝐮𝑘  are the state 

vector 𝐱 and the measurable system input 𝐮 evaluated at time 𝑡 = 𝑘∆𝑡; 𝐰 and 𝐯 are the 

process and measurement noise vectors, which are assumed to be zero mean multivariate 

Gaussian noises with covariance 𝐐𝑘  and 𝐑𝑘  at 𝑡 = 𝑘 ⋅ ∆𝑡, respectively. 

http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Covariance_matrix
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To update the underlying nonlinear system, the state vector 𝐱 is formed by appending the 

parameter vector 𝛉, which are assumed as constants, to the original state vector 𝐱0  to ob-

tain an augmented state vector 𝐱 =  𝐱0 T 𝛉T 
T
 and set the associated time derivative as 

𝐅 =  𝐅0 T 𝟎T 
T
 in equation (2.63). 

To implement the EKF and UKF, equation (2.63) is converted into discrete time form 

with the following difference equation 

 𝐱𝑘+1 = 𝐟 𝑘, 𝐱𝑘 ,𝐮𝑘 ,𝐰𝑘  (2.65) 

where function 𝐟 is obtained by 

 𝐟 𝑘, 𝐱𝑘 ,𝐮𝑘 ,𝐰𝑘  = 𝐱𝑘 +  𝐅 𝑡, 𝐱 𝑡 ,𝐮 𝑡 ,𝐰 𝑡  
 𝑘+1 ∆𝑡

𝑘∆𝑡

⋅ d𝑡 (2.66) 

and the integral in equation (2.66) can be evaluated by any numerical methods. However, 

in the case of real-time computing, an explicit form is more favorable since no iteration is 

required for solving nonlinear functions. In this dissertation, a Euler forward scheme is 

applied. 

Now, the objective is to apply a Kalman filter to the system stated in equations (2.65) and 

(2.64). The Kalman filter propagates the first two moments of the distribution of state 

vector 𝐱𝑘  recursively. This means that only the estimated state from the previous time 

step and the current measurement are needed to compute the estimate for the current state. 

Unlike other estimation or model updating methods introduced in CHAPTER 2, no histo-

ry of measurements and/or estimates is required. This implies that the memory required 

for the model updating process is minimum. 

The Kalman filter has a “predictor-corrector” structure. Let  𝐱 𝑖|𝑗  be the estimate of 𝐱𝑖  us-

ing the measured information up to and including time 𝑡 = 𝑗 ⋅ ∆𝑡, 𝐘𝑗 =  𝐲1,⋯ , 𝐲𝑗  . The 

covariance of this estimate is 𝐏𝑖|𝑗 = 𝔼   𝐱𝑖 − 𝐱 𝑖|𝑗   𝐱𝑖 − 𝐱 𝑖|𝑗  
T

|𝐘𝑗  , where 𝔼 ⋅  is the ex-
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pectation operator. Given an estimate 𝐱 𝑘|𝑘 , in the predictor stage, the first two moments 

are given by 

 𝐱 𝑘+1|𝑘 = 𝔼 𝐟 𝑘, 𝐱𝑘 ,𝐮𝑘 ,𝐰𝑘 |𝐘
𝑘  (2.67) 

 𝐏𝑘+1|𝑘 = 𝔼   𝐱𝑘+1 − 𝐱 𝑘+1|𝑘  𝐱𝑘+1 − 𝐱 𝑘+1|𝑘 
T

|𝐘𝑘  (2.68) 

The next step is to update the above estimates by adding the current information obtained 

from sensor measurements at time 𝑡 =  𝑘 + 1 ⋅ ∆𝑡. In the Kalman filter framework, a 

linear update rule is specified, and the Kalman gain is chosen so that the mean squared 

error (MSE) of posterior estimate is minimized. In Appendix C, the optimal Kalman gain 

is derived and the corrector stage can be summarized as 

 𝐲 𝑘+1|𝑘 = 𝔼 𝐡 𝐱𝑘+1,𝐮𝑘+1, 𝐯𝑘+1 |𝐘
𝑘  (2.69) 

 𝐱 𝑘+1|𝑘+1 = 𝐱 𝑘+1|𝑘 + 𝐊𝑘+1𝐲 𝑘+1 (2.70) 

 𝐏𝑘+1|𝑘+1 = 𝐏𝑘+1|𝑘 −𝐊𝑘+1𝐏𝐲 𝐲 𝐊𝑘+1
T  (2.71) 

 𝐊𝑘+1 = 𝐏𝐱 𝐲 𝐏𝐲 𝐲 
−1 (2.72) 

where 𝐲 𝑘+1 = 𝐲𝑘+1 − 𝐲 𝑘+1|𝑘 ; and 𝐊𝑘+1 is the optimal Kalman gain. To obtain 𝐊𝑘+1, the 

two posterior statistics 𝐏𝐱 𝐲  and 𝐏𝐲 𝐲  have to be obtained first. A brief illustration of how 

the estimation is progressed is shown in Figure 2.11. For more details in the derivation, 

please see Appendix C. 

Since functions 𝐟 and 𝐡 are nonlinear, the precise statistics of the above estimates can on-

ly be obtained if the distribution of  𝐱𝑘 , condition on information 𝐘𝑘 , is known. However, 

in real world applications, this requirement is almost never satisfied. Therefore, a practic-

al solution is to approximate the distributions of  𝐱𝑘  and 𝐲𝑘 . The remainder of this section 
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discusses the EKF and UKF, two nonlinear Kalman filters developed based on approx-

imating the distributions of  𝐱𝑘  and 𝐲𝑘 . 

 

Figure 2.11 Time Stepping of Kalman Filter Process (squares represent functions; ellipses 

represent Gaussian variables; unenclosed values are vectors) 

2.3.2 Extended Kalman Filter (EKF) 

As a nonlinear version of Kalman filter, the EKF attempts to approximate the statistics in 

nonlinear equations (2.67) to (2.72) by first linearizing the nonlinear system at previous 

estimate 𝐱 𝑘|𝑘 . However, before the linearization, the following adjustment to the system 

has to be made to equations (2.65) and (2.64). Suppose the Euler forward explicit scheme 

is applied to equation (2.66), then equation (2.65) is modified to its new form as 

 
𝐱𝑘+1 = 𝐱𝑘 + 𝐅 𝑘∆𝑡, 𝐱 𝑘∆𝑡 ,𝐮 𝑘∆𝑡  ⋅ ∆𝑡 + 𝐰𝑘  

= 𝐟 𝑘, 𝐱𝑘 ,𝐮𝑘 + 𝐰𝑘  
(2.73) 

and measurement equation (2.64) is modified as 

 𝐲𝑘+1 = 𝐡 𝐱𝑘+1,𝐮𝑘+1 + 𝐯𝑘+1 (2.74) 

where the time index 𝑘 has been changed to 𝑘 + 1 to be consistent with equation (2.73). 

It is also noted that, the above adjustments remove 𝐰𝑘  and 𝐯𝑘  from nonlinear functions 𝐟 

and 𝐡. This outcome is based on an assumption that the process and measurement noises 
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𝐰𝑘 , 𝐯𝑘  are additive only, and have no coupling with states or input variables. This restric-

tion is only for EKF, and can be removed in the case of UKF. 

The linearization of equation (2.73) at 𝐱 = 𝐱 𝑘|𝑘  gives 

 𝐱𝑘+1 ≈ 𝐟 𝑘, 𝐱 𝑘|𝑘 ,𝐮𝑘 + ∇𝐟𝐱 ∙  𝐱𝑘 − 𝐱 𝑘|𝑘 + 𝐰𝑘  (2.75) 

where ∇𝐟𝐱 is the Jacobian matrix of function 𝐟 with respect to state 𝐱 evaluated at 𝐱 𝑘|𝑘  

 ∇𝐟𝐱 =  
𝛛𝐟 𝑘, 𝐱𝑘 ,𝐮𝑘 

𝛛𝐱𝑘
 
𝐱𝑘=𝐱 𝑘|𝑘

=  𝐈 + ∆𝑡 ⋅  
𝛛𝐅 𝑡, 𝐱,𝐮 

𝛛𝐱
 
𝐱=𝐱 𝑘|𝑘  ; 𝑡=𝑘∆𝑡

 (2.76) 

The first and second moments can be derived as 

 𝐱 𝑘+1|𝑘 = 𝐟 𝑘, 𝐱 𝑘|𝑘 ,𝐮𝑘  (2.77) 

 𝐏𝑘+1|𝑘 = ∇𝐟𝐱 ⋅ 𝐏𝑘|𝑘 ⋅ ∇𝐟𝐱
T + 𝐐𝑘  (2.78) 

Then the measurement equation (2.74) in the recursive corrector stage is linearized at 

prior estimate 𝐱 𝑘+1|𝑘  as 

 𝐲𝑘+1 ≈ 𝐡 𝐱 𝑘+1|𝑘 ,𝐮𝑘+1 + ∇𝐡𝐱 ⋅  𝐱𝑘+1 − 𝐱 𝑘+1|𝑘 + 𝐯𝑘+1 (2.79) 

where ∇𝐡𝐱 is the Jacobian matrix of function 𝐡 with respect to state 𝐱 evaluated at 𝐱 𝑘+1|𝑘  

 ∇𝐡𝐱 =  
𝛛𝐡 𝐱𝑘+1,𝐮𝑘+1 

𝛛𝐱𝑘+1
 
𝐱𝑘+1=𝐱 𝑘+1|𝑘

 (2.80) 

Now before calculating the optimal Kalman gain 𝐊𝑘+1, 𝐏𝐱 𝐲  and 𝐏𝐲 𝐲  are evaluated as 

 𝐏𝐱 𝐲 = 𝔼  𝐱𝑘+1 − 𝐱 𝑘+1|𝑘 ⋅ 𝐲 𝑘+1
T  = 𝐏𝑘+1|𝑘 ⋅ ∇𝐡𝐱

T  (2.81) 



67 

 

 𝐏𝐲 𝐲 = 𝔼 𝐲 𝑘+1𝐲 𝑘+1
T  = ∇𝐡𝐱 ⋅ 𝐏𝑘+1|𝑘 ⋅ ∇𝐡𝐱

T + 𝐑𝑘+1 (2.82) 

Finally, the estimated state 𝐱 𝑘+1|𝑘+1 and its covariance 𝐏𝑘+1|𝑘+1 can be obtained using 

equations (2.70) to (2.72), as shown in general Kalman filter framework. In this case, the 

optimal Kalman gain matrix 𝐊𝑘+1 is given as 

 𝐊𝑘+1 = 𝐏𝑘+1|𝑘 ⋅ ∇𝐡𝐱
T ⋅  ∇𝐡𝐱 ⋅ 𝐏𝑘+1|𝑘 ⋅ ∇𝐡𝐱

T + 𝐑𝑘+1 
−1

 (2.83) 

Like regular linear Kalman filters, EKF also need prior statistical information, such as 

noise level and initial values of parameters. This information is generally determined by 

preliminary test, analysis and certain knowledge about a particular system beforehand. 

However, in some applications, the prior statistical information are not adequate to 

represent the real scenarios, which will generate extra error as noise in the system. This 

compromises the optimality of the estimate made by Kalman filter, and sometimes even 

leads to filtering divergence. For example, in navigation applications, sudden change of 

object speed by sharp turning or accelerating will create difficulties in tracking the trajec-

tory of the moving object. To  improve the robustness of the estimation process, several 

adaptive Kalman filters are developed by modifying the original formulation. One exam-

ple is to modify the prior covariance matrix 𝐏𝑘+1|𝑘  in equation (2.78) as 

 𝐏𝑘+1|𝑘 = λ𝑘+1 ⋅  ∇𝐟𝐱 ⋅ 𝐏𝑘|𝑘 ⋅ ∇𝐟𝐱
T + 𝐐𝑘  (2.84) 

where λ𝑘 ≥ 1 is an adaptive factor at time step 𝑡 = 𝑘∆𝑡. There are many methods to eva-

luate the value of λ𝑘 , and most of them are based on the quantities of the measurement 

error and model disturbance  (Hu, Chen, Chen, & Liu, 2003); (Yang, Lin, Huang, & Zhou, 

2006). In (Yang, Lin, Huang, & Zhou, 2006), a more generalized adaptive scheme is pro-

posed as each of the parameters θ𝑖  has an individual adaptive factor λ𝑘
𝑖 . The correspond-

ing 𝐏𝑘+1|𝑘  is modified as 

 𝐏𝑘+1|𝑘 = 𝚲𝑘+1 ∇𝐟𝐱 ⋅ 𝐏𝑘|𝑘 ⋅ ∇𝐟𝐱
T 𝚲𝑘+1

T + 𝐐𝑘  (2.85) 
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where 𝚲𝑘  is a diagonal matrix, with its diagonal entry corresponding to θ𝑖  is set to  λ𝑘
𝑖 . 

In this case, the values of λ𝑘
𝑖  are obtained by solving a nonlinear optimization problem. 

2.3.3 Unscented Kalman Filter (UKF) 

Unlike EKF, instead of linearizing the nonlinear system equations, the UKF attempts to 

approximate the statistics by propagating  a chosen set of sample points through the non-

linear system. These sample points completely capture the true mean and covariance of 

the Gaussian random variables (GRV), and when propagate through the true nonlinear 

system, they can capture the posterior mean and covariance accurately to the 3rd order 

for any nonlinearity (Julier, Uhlmann, & Durrant-Whyte, 2000). The detailed error analy-

sis can be found in Appendix D. 

Assume the nonlinear system to be updated is described by equations (2.65) and (2.64). 

Comparing with the EKF, there is no need to assume the process and measurement noises 

𝐰𝑘  and 𝐯𝑘  are additive only in this case. This feature suggests the UKF can handle vari-

ous forms of noises, which is an advantage when dealing with nonlinear systems with 

multiplicative noises.  

In UKF, to better capture the effect of process and measurement noises 𝐰𝑘  and 𝐯𝑘 , the 

state variable is further concatenated together with the noise components as 

 𝐱𝑘
𝐚 =  𝐱𝑘

T 𝐰𝑘
T 𝐯𝑘

T T  (2.86) 

The prediction step proceeds by first obtaining the estimated state 𝐱 𝑘
𝐚  and covariance 𝐏𝑘|𝑘

𝐚  

 𝐱 𝑘
𝐚 =  𝐱 𝑘 𝟎T 𝟎T T  (2.87) 

 𝐏𝑘|𝑘
𝐚 =  

𝐏𝑘|𝑘 𝟎 𝟎

𝟎 𝐐𝑘 𝟎
𝟎 𝟎 𝐑𝑘

  (2.88) 
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A set of 2𝐿 + 1 sigma points 𝐱 𝑘
𝐚  is derived from the above augmented state 𝐱 𝑘

𝐚  and asso-

ciated covariance 𝐏𝑘|𝑘
𝐚 , where 𝐿 is the dimension of the augmented state 𝐱𝑘

𝐚  

 
𝐱 𝑘
𝐚 =  𝐱 𝑘

𝐚 𝐱 𝑘
𝐚 +    𝐿 + 𝜆 𝐏𝑘|𝑘

𝐚  
𝑖

𝐱 𝑘
𝐚 −    𝐿 + 𝜆 𝐏𝑘|𝑘

𝐚  
𝑖

 ,

𝑖 = 1,2, . . . , 𝐿 

(2.89) 

where    𝐿 + 𝜆 𝐏𝑘|𝑘
𝐚  

𝑖

 is the 𝑖th column of the matrix square root of  𝐿 + 𝜆 𝐏𝑘|𝑘
𝐚 , and 

𝜆 = 𝛼2 𝐿 + 𝜅 − 𝐿 is a scaling parameter. 𝛼 determines the spread of the sigma points 

around 𝐱 𝑘
𝐚  and is usually set to a small positive value (e.g.,1e-3). 𝜅 is a secondary scaling 

parameter which is usually set to 0. 

Then compute the prior state estimate 𝐱 𝑘+1|𝑘  and covariance 𝐏𝑘+1|𝑘  as 

 𝐱 𝑖 ,𝑘+1|𝑘
𝐱  = 𝐟 𝑘, 𝐱 𝑖 ,𝑘

𝐱 ,𝐮𝑘 , 𝐱 𝑘
𝐰  (2.90) 

 𝐱 𝑘+1|𝑘 =  𝐖𝑖
𝐦

2𝐿

𝑖=0

𝐱 𝑖 ,𝑘+1|𝑘
𝐱  (2.91) 

 𝐏𝑘+1|𝑘 =  𝐖𝑖
𝐜

2𝐿

𝑖=0

 𝐱 𝑖 ,𝑘+1|𝑘
𝐱 − 𝐱 𝑘+1|𝑘  𝐱 𝑖,𝑘+1|𝑘

𝐱 − 𝐱 𝑘+1|𝑘 
T
 (2.92) 

where 𝐱 𝑖 ,𝑘
𝐱  is the 𝑖th column of the matrix 𝐱 𝑘

𝐱 ; 𝐱 𝑘
𝐚 =   𝐱 𝑘

𝐱 T  𝐱 𝑘
𝐰 T  𝐱 𝑘

𝐯 T T  for time 

step 𝑘. 

In the update stage, the two posterior statistics 𝐏𝐱 𝐲  and 𝐏𝐲 𝐲  can be computed as 

 𝐲 𝑖 ,𝑘+1|𝑘 = 𝐡 𝐱 𝑖 ,𝑘+1|𝑘
𝐱 ,𝐮𝑘+1, 𝐱 𝑘

𝐯  (2.93) 

 𝐲 𝑘+1|𝑘 =  𝐖𝑖
𝐦

2𝐿

𝑖=0

𝐲 𝑖 ,𝑘+1|𝑘  (2.94) 
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 𝐏𝐲 𝐲 =  𝐖𝑖
𝐜

2𝐿

𝑖=0

 𝐲 𝑖 ,𝑘+1|𝑘 − 𝐲 𝑘+1|𝑘  𝐲 𝑖,𝑘+1|𝑘 − 𝐲 𝑘+1|𝑘 
T
 (2.95) 

 𝐏𝐱 𝐲 =  𝐖𝑖
𝐜

2𝐿

𝑖=0

 𝐱 𝑖 ,𝑘+1|𝑘
𝐱 − 𝐱 𝑘+1|𝑘  𝐲 𝑖 ,𝑘+1|𝑘 − 𝐲 𝑘+1|𝑘 

T
 (2.96) 

In the above sigma points calculations, 𝐖𝑖
𝐦 is the weight for the mean and 𝐖𝑖

𝐜 is the 

weight for the covariance. They are given as 

 𝐖0
𝐦 = 𝜆  𝐿 + 𝜆   (2.97) 

 𝐖0
𝐜 = 𝜆  𝐿 + 𝜆  +  1 − 𝛼2 + 𝛽  (2.98) 

 𝐖𝑖
𝐦 = 𝐖𝑖

𝐜 = 1  2 𝐿 + 𝜆   , 𝑖 = 1,2, . . . ,2𝐿 (2.99) 

where 𝛽 is a parameter used to incorporate prior knowledge of the distribution of 𝐱𝑘 , and 

𝛽 = 2 is optimal for Gaussian distributions. The above sampling-propagating procedure 

to obtain the posterior statistics is actually a scaled version of unscented transformation 

(UT). The properties of this scaled UT are shown in Appendix D,  with detailed analysis 

on the accuracy of the resulting statistics. 

Finally, the optimal Kalman gain 𝐊𝑘+1, the posterior estimate of state (including system 

parameters) 𝐱 𝑘+1|𝑘+1 and the corresponding covariance 𝐏𝑘+1|𝑘+1 can be obtained using 

equations (2.70) to (2.72). 

2.3.4 High-gain Observer 

The high gain observer reviewed in this section follows the work by (Gauthier, 

Hammouri, & Othman, 1992). Consider the system in the following form 

 𝐱 = 𝐀𝐱 𝑡 + 𝐟 𝐱 𝑡 ,𝐮 𝑡   (2.100) 



71 

 

 𝐲 𝑡 = 𝐂𝐱 𝑡  (2.101) 

where 𝐱 𝑡 ∈ ℝ𝑛 , 𝐮 𝑡 ∈ ℝ𝑚  and 𝐲 𝑡 ∈ ℝ. Specifically, the matrices 𝐀 and 𝐂 are given 

as 

 𝐀 =  

0 1
⋮ ⋮

… 0
⋱ ⋮

0 0
0 0

… 1
… 0

 ,𝐂 =  1 0 … 0  (2.102) 

where 𝐟:ℝ𝑛 × ℝ𝑚  ℝ𝑛  is a nonlinear function with the form as 

 𝐟 𝐱 𝑡 ,𝐮 𝑡  =  
𝑓1 𝐱1 𝑡 ,𝐮 𝑡  

⋮
𝑓𝑛  𝐱𝑛 𝑡 ,𝐮 𝑡  

  (2.103) 

where 𝐱𝑖 =  𝐱1 ⋯ 𝐱𝑖 T; nonlinear functions 𝑓𝑖 :ℝ
𝑖 × ℝ𝑚  ℝ are assumed to be glo-

bally Lipschitzian with respect to 𝐱𝑖 , and uniform with respect to 𝐮. The corresponding 

Lipschitz constants 𝑘𝑖 > 0. 

Based upon standard Lyapunov arguments, by applying the Lipschitz property of 𝐟 in 𝐱 

and 𝐮, an observer for system [equations (2.100) and (2.101)] can be designed as follows 

(The proof is shown in Appendix E) 

 𝐱  = 𝐀𝐱  𝑡 + 𝐟 𝐱 𝑡 ,𝐮 𝑡  − 𝐊 λ −𝟏𝐂T 𝐂𝐱  𝑡 − 𝐲 𝑡   (2.104) 

where λ > 0 is a predetermined parameter; and 𝐊 λ  is the solution of the following Lya-

punov equation 

 𝐀T𝐊 + 𝐊𝐀 + λ𝐊 = 𝐂T𝐂 (2.105) 

This observer has the property that the tracking error 𝐱  𝑡 − 𝐱 𝑡  tends to zero exponen-

tially fast with a sufficiently large λ (see Appendix E). The drawback of this observer is 
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that it can only deal with a small range of nonlinear systems, and its performance under 

the presence of noise still needs to be evaluated. 

2.3.5 Bouc-Wen Model and Its Variants 

Based on the formulation of the aforementioned nonlinear observers, to apply them for 

model updating purposes, a well-structured nonlinear dynamical system has to be pro-

vided. Such a nonlinear system is generally given in state space form, and, hence, re-

quires an explicit mathematical expression. More importantly, it must be able to represent 

a variety of nonlinear behaviors of structures undergo damaging process. 

Bouc-Wen model is a suitable mathematical model for the task. It has been proven to be 

extremely versatile due to its tractability and variety of expressing softening or hardening 

hysteretic characteristics (Ismail, Ikhouane, & Rodellar, 2009). This model was proposed 

initially by Bouc (Bouc, 1967), and subsequently generalized by Wen in (Wen, 1976). 

Since then, it was known as the Bouc-Wen model and has been extensively used in the 

literature to describe nonlinear hysteretic systems, particularly in the area of civil and 

mechanical engineering. This model is expressed in a first order nonlinear differential 

equation with a set of parameters that governs the shape of the resulting hysteresis loop. 

 𝑧 = 𝐴𝑥 − 𝛽 𝑥  𝑧 𝑧 𝑛−1 − 𝛾𝑥  𝑧 𝑛  (2.106) 

where 𝑥 = the displacement; and 𝑧 = hysteretic force. The slope of the hysteresis curve, 

indicating the stiffness of the model, is given as 

 
d𝑧

d𝑥
= 𝐴 −  𝛾 + 𝛽 ⋅ sgn 𝑥 ⋅ 𝑧   𝑧 𝑛  (2.107) 

where sgn ⋅ = signum function. Equation (2.107) shows that all the parameters have 

distinctive roles in determining the stiffness of the model. In(Ikhouane & Rodellar, 2007); 

(Ismail, Ikhouane, & Rodellar, 2009), the behavior and properties of the Bouc-Wen mod-

el have been extensively studied and  documented. Certain important properties consi-

dered in this dissertation are listed here. 
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 Uniqueness of the Bouc-Wen model 

If a Bouc-Wen model is used to approximate a hysteresis 𝐹BW  as 

 𝐹BW = 𝑘𝑥 + 𝛼𝑧  (2.108) 

and 𝑧 is given in equation (2.106). Define a normalized variable 𝑧A = 𝑧 𝐴 , and then 

apply equation (2.106), the following expression can be obtained for 𝑧A  

 𝑧 A = 𝑥 − 𝛽0 𝑥  𝑧A  𝑧A  
𝑛−1 − 𝛾0𝑥  𝑧A 

𝑛  (2.109) 

where 𝛽0 = 𝛽 𝐴 𝑛−1, and 𝛾0 = 𝛾 𝐴 𝑛 𝐴 . Note that equation (2.109) is equivalent to 

equation (2.106), except the disappearance of 𝐴 in the formulation. The desired hyste-

resis 𝐹BW  can be expressed as 

 𝐹BW = 𝑘𝑥 + 𝛼0𝑧A   (2.110) 

with 𝛼0 = 𝛼𝐴. This observation implies the parameter set  𝛼0,𝛽0,𝛾0,𝑛,𝑘  can gener-

ate the same hysteresis as parameter set  𝐴,𝛼,𝛽, 𝛾,𝑛,𝑘 , but with only five parame-

ters. The direct consequence is that any identification procedures that use input-output 

data cannot determine a unique set of parameters of the Bouc-Wen model. In this dis-

sertation, the normalized form [equation (2.109)] has been adopted to remove this 

ambiguity for later model updating. It is also worth pointing out that, there is more 

than one way to normalize the standard Bouc-Wen model. One of the normalized 

forms is documented in (Ikhouane & Rodellar, 2007). 

 

 Bounded input bounded output (BIBO) stability 

For any bounded input 𝑥, the BIBO stability of a dynamical system implies that,  the 

output of the system 𝑧 is also bounded. This BIBO stability property guarantees that 

the system is stable in open loop. The following table adapted from (Ikhouane & 

Rodellar, 2007); (Ismail, Ikhouane, & Rodellar, 2009) shows the BIBO conditions for 

standard Bouc-Wen model. 
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Table 2.1 Classification of BIBO stability for standard Bouc-Wen model 

Case Conditions 𝛺 

Upper 

bound on 

hysteresis 

Class 

𝐴 > 0 
𝛽 + 𝛾 > 0 and 𝛽 − 𝛾 ≥ 0 ℝ max  𝑧 0  , 𝑧0  I 

𝛽 − 𝛾 < 0 and  𝛽 ≥ 0  −𝑧1, 𝑧1  max  𝑧 0  , 𝑧0  II 

𝐴 < 0 
𝛽 − 𝛾 > 0 and 𝛽 + 𝛾 ≥ 0 ℝ max  𝑧 0  , 𝑧1  III 

𝛽 + 𝛾 < 0 and 𝛽 ≥ 0  −𝑧0, 𝑧0  max  𝑧 0  , 𝑧1  IV 

𝐴 = 0 𝛽 + 𝛾 > 0 and 𝛽 − 𝛾 ≥ 0 ℝ  𝑧 0   V 

Otherwise  ∅   

 

where 𝛺 =  𝑧 0 ∈ ℝ | 𝑧 is BIBO stable ∀𝑥 ∈  ℂ1  with constants  𝐴,𝛼,𝛽, 𝛾,𝑛, 𝑘   is 

the set of initial conditions; and the extreme values 𝑧0 and 𝑧1 are defined as 

 𝑧0 ≜  
𝐴

𝛽 + 𝛾

𝑛

 (2.111) 

and  

 𝑧1 ≜  
𝐴

𝛾 − 𝛽

𝑛

 (2.112) 

 Thermodynamic admissibility[paper] 

The standard Bouc-Wen model fulfill the second principle of thermodynamics if and 

only if the following holds(Ikhouane & Rodellar, 2007); (Ismail, Ikhouane, & 

Rodellar, 2009) 

 

𝑛 > 0, 

𝛽 > 0, 

−𝛽 ≤ 𝛾 ≤ 𝛽. 

(2.113) 

 Passivity 

The passivity of the standard Bouc-Wen model, which is related to the energy dissi-

pation of the system, is discussed herein. Using the similar argument from (Ikhouane 
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& Rodellar, 2007), consider the standard Bouc-Wen system [equation (2.106)] with 

state 𝑥, input 𝑢 = 𝑥 , and output 𝐹BW  defined by equation (2.108). From the BIBO 

condition of class I in Table 2.1, the following expression can be obtained 

 𝑧𝑧 = 𝐴𝑧𝑥 − 𝛽 𝑥   𝑧 𝑛+1 − 𝛾𝑧𝑥  𝑧 𝑛 ≤ 𝐴𝑧𝑥 +   𝛾 − 𝛽  𝑥   𝑧 𝑛+1 ≤ 𝐴𝑧𝑥  (2.114) 

and from equation (2.108) 

 𝑧𝑥 = 𝑧𝑢 =
𝐹BW − 𝑘𝑥

𝛼
𝑢 (2.115) 

using equations (2.114) and (2.115) 

 𝐹BW𝑢 ≥ 2𝑙1𝑧𝑧 + 2𝑙2𝑥𝑥 = 𝑉  (2.116) 

where 𝑙1 = 𝛼  2𝐴  > 0, 𝑙2 = 𝑘 2 > 0, and the storage function 𝑉 = 𝑙1𝑧
2 + 𝑙2𝑥

2 . 

Equation (2.116) shows that the class I Bouc-Wen model is passive with respect to 

the storage function 𝑉. Passivity is related to energy dissipation (see Appendix F). 

From the above properties of the Bouc-Wen model, it is shown that class I (see Table 2.1) 

is the only one that is BIBO stable, passive and compatible with the law of thermodynam-

ics. Therefore, all the applications of Bouc-Wen model in this dissertation are restricted 

to class I. 

The responses of a typical Bouc-Wen model in the form of equations (2.106) and (2.108) 

are plotted in Figure 2.13, subjected to two controlled cyclic displacement inputs given in 

Figure 2.12. The Bouc-Wen model parameters are chosen as  𝐴,𝛼,𝛽, 𝛾,𝑛,𝑘 =

 1, 200, 0.5, 0.3, 2, 10 . Here 𝐴 = 1 is chosen to normalize the parameter set. Note that 

both of the input displacements have a constant rate (0.01/sample). The first one has a 

constant amplitude at 3, and the other with increasing amplitude as the peak of each cycle 

increases from 0.5 to 3 with an increment of 0.5. 

The corresponding responses of the Bouc-Wen model shown in Figure 2.13 have smooth 

nonlinear hysteresis loops. However, they cannot represent the desired damage behavior 



76 

 

introduced in section 2.2.4, such as degradation of unloading/reloading stiffness and 

strength. 

  

Figure 2.12 Cyclic Displacement Inputs  

(left: constant amplitude; right: increasing amplitude) 

 

Figure 2.13 Responses of a Bouc-Wen Model [ 𝐴,𝛼,𝛽, 𝛾,𝑛,𝑘 =  1, 200, 0.5, 0.3, 2, 10 ] 

(left: constant amplitude; right: increasing amplitude) 

To describe these deteriorating behaviors, and meanwhile maintain the tractability for 

further analysis, numerous researchers have proposed hysteresis model by modifying the 

original Bouc-Wen model. In (Baber & Wen, Random Vibration of Hysteretic, 

Degrading Systems, 1981), Baber and Wen have proposed a model to account for the de-

gradation of stiffness and strength. Later, in 1985, (Baber & Noori, 1985) have proposed 

another model to consider the pinching of hysteresis by adding a slip-lock element to the 
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previous model. However, this model, which can consider both degradation and pinching 

of hysteresis loop, was found too expensive to compute (Baber & Noori, 1986). Thus, a 

simplified model was proposed by the same researchers to consider the pinching behavior 

with a pinching shape function  𝑧 . Let the hysteresis 𝐹BW  be defined the same way as 

equation (2.108), but equation (2.106) is modified as 

 𝑧 =  𝑧 ⋅
𝐴𝑥 − 𝜈 𝛽 𝑥  𝑧 𝑧 𝑛−1 + 𝛾𝑥  𝑧 𝑛 

휂
 (2.117) 

where 𝐴, 𝜈 and 휂 are degradation shape functions, and they are linked to the hysteretic 

response duration and severity by the total energy dissipated by the hysteretic model dur-

ing time  0, 𝑡𝑓  

 𝐸 𝑡𝑓 =  𝛼𝑧𝑥  d𝑡
𝑡𝑓

0

 (2.118) 

Since  

 휀 𝑡𝑓 =  𝑧𝑥  d𝑡
𝑡𝑓

0

 (2.119) 

is proportional to 𝐸 𝑡𝑓 , it can also be used as a measure of response duration and severi-

ty. And the degradation shape functions can be subsequently defined as 

 𝐴 = 1 − 𝛿𝐴휀 (2.120) 

 𝜈 = 1 + 𝛿𝜈휀 (2.121) 

 휂 = 1 + 𝛿휂휀 (2.122) 

where 𝛿𝐴, 𝛿𝜈 , and 𝛿휂  are constants that determine the desired rates of degradation for 𝐴, 𝜈 

and 휂, respectively. And  𝑧  is a pinching shape function, defined as (Baber & Noori, 

1986) 
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 𝑧 = 1 − 휁1𝑒

−𝑧2

2휁2
2
 

(2.123) 

where 0 ≤ 휁1 < 1 controls the severity of pinching and increasing 휁2 causes the pinching 

region to spread. In (Foliente, 1995), the pinching shape function  𝑧  has been further 

modified as  

 
 𝑧 = 1 − 휁1𝑒

− 𝑧⋅sgn  𝑥  −𝑞𝑧M  
2

휁2
2

 
(2.124) 

where 𝑧M  is the maximum value of 𝑧 given by 

 𝑧M =  
𝐴

𝜈 𝛽 + 𝛾 

𝑛

 (2.125) 

and the two parameters 휁1 and 휁2 are defined as 

 휁1 = 휁T 1 − 𝑒−𝑝휀   (2.126) 

 휁2 =  𝜓0 + 𝛿𝜓휀  𝜆 + 휁1  (2.127) 

where 휁T = the measure of total slip; 𝑝 = constant controls the rate of initial drop in 

slope; 𝑞 = constant set a fraction of 𝑧M  as the pinching level; 𝜓0 = constant controls the 

amount of pinching; 𝛿𝜓 = desired rate of pinching spread; and 𝜆 = constant controls the 

rate of change of 휁2 as 휁1 changes. 

The type of structural hysteresis that has been investigated in this dissertation, as will be 

shown in section 7.4, does not involve pinching behavior. Therefore, the Bouc-Wen 

model applied can be expressed as equation (2.117) with pinching shape function 

 𝑧 = 1. To consider more freedom in tuning the degradation parameters, further mod-

ification to equation (2.117) are made. As mentioned in equations (2.109) and (2.110), to 

avoid ambiguity in the original Bouc-Wen model formulation, parameter 𝐴 is set as equal 
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to 1 for normalization purpose. Also, two shaping functions 𝜈𝛽  and 𝜈𝛾 , instead of 𝜈, are 

added to 𝛽 and 𝛾 respectively. Consequently, equation (2.117) is further modified as  

 𝑧 =
𝑥 − 𝜈𝛽 ⋅ 𝛽 𝑥  𝑧 𝑧 

𝑛−1 − 𝜈𝛾 ⋅ 𝛾𝑥  𝑧 
𝑛

휂
 (2.128) 

where 𝜈𝛽  and 𝜈𝛾  are defined in the similar manner as 𝜈 

 𝜈𝛽 = 1 + 𝛿𝛽휀 (2.129) 

 𝜈𝛾 = 1 + 𝛿𝛾휀 (2.130) 

where 𝜈𝛽  and 𝜈𝛾  are constants that determine the desired rate of degradation for 𝛽 and 𝛾, 

respectively. 

To demonstrate the effect of each shaping function on changing the behavior of original 

Bouc-Wen model, the following examples are provided. To better comprehend the beha-

vior of the model, the stiffness (slope of the hysteresis curve) is derived as  

 
d𝑧

d𝑥
=

1 −  𝜈𝛾 ⋅ 𝛾 + 𝜈𝛽 ⋅ 𝛽 ⋅ sgn 𝑥 ⋅ 𝑧   𝑧 𝑛

휂
 (2.131) 

Note that 𝜈𝛽 , 𝜈𝛾 , and 휂 are considered as constants in this derivation, and the maximum 

value of 𝑧 is given by 

 𝑧M =  
1

𝜈𝛽 ⋅ 𝛽 + 𝜈𝛾 ⋅ 𝛾

𝑛

 (2.132) 

Consider the same model parameter set as in Figure 2.13, by varying each shaping func-

tion independently, the following cases are presented with the same cyclic displacement 

inputs given in Figure 2.12 (the blue curve in each figure represents the corresponding 

response in Figure 2.13): 
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 𝛿휂 = 0.05 

In Figure 2.14, the hysteresis shows degradation in unloading stiffness, but the peak 

for each cycle remains unchanged, which implies no degradation in strength. 

 

Figure 2.14 Response of a degrading Bouc-Wen Model 𝛿휂 = 0.05 

(left: constant amplitude; right: increasing amplitude) 

For both cyclic inputs, it is seen from equation (2.131) that the stiffness of the model 

is reduced by a factor of  1 휂 , which explains the stiffness degradation. And the max-

imum for each cycle is independent of 휂 as shown in equation (2.132), therefore the 

strength remains unchanged. Actually, there is a slight drop of strength under both in-

puts. This behavior is due to the fact that, in the derivation of equations (2.131) and 

(2.132), it is assumed that 𝜈𝛽 , 𝜈𝛾 , and 휂 are constants, which is not entirely correct 

since they are dependent on 휀. Nonetheless, if the rate of change is slow, equations 

(2.131) and (2.132) can still be applied with certain degree of approximation. 
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Figure 2.15 Response of a degrading Bouc-Wen Model 𝛿𝛽 = 0.05 

(left: constant amplitude; right: increasing amplitude) 

 𝛿𝛽 = 0.05 

In this case the two plots in Figure 2.15 show a clear degradation of strength, which 

complies with equation (2.132). But the degradation of unloading stiffness is not sig-

nificant. Another effect observed in Figure 2.15 is that, by increasing the value of 𝛽, 

the width of each hysteresis loop has increased as well under both cyclic inputs. 

 𝛿𝛾 = 0.05 

The effect of increasing 𝛾 is very similar to the previous case. The strength degrada-

tion under both inputs is obvious and the unloading stiffness does not have significant 

change. However, the width of each hysteresis loop, for both inputs, has not shown a 

significant change either. This observation is different than the previous case. 
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Figure 2.16 Response of a degrading Bouc-Wen Model 𝛿𝛾 = 0.05 

(left: constant amplitude; right: increasing amplitude) 

Above three cases have demonstrated the distinctive effect of each shaping function. 

Hence, it is justified by assigning the above three shaping functions to maximize the 

freedom of this degradation model to represent the deteriorating behavior. 

2.3.6 General Comments 

Both the EKF and UKF fall into Kalman filter framework, but the linearization assump-

tion of the EKF limits its performance because the linear transformation would produce 

reliable results only when the dynamics can be well approximated by a linear equation at 

each time step. For highly nonlinear systems, the UKF provides a more accurate estimate. 

A numerical study of UKF in civil engineering applications has also shown consistent 

results. However, the EKF is still a very efficient algorithm, considering the fact that no 

extra sampling is required at each time step. 

The EKF has several variants that have been developed over the years. (Yang, Lin, 

Huang, & Zhou, 2006) proposed an adaptive EKF for structural damage identification, 

which can not only provide an estimate for state variables and system parameters, but al-

so track abrupt changes of parameters, such as stiffness and damping. 

As a different type of observer, although there is no noise model embedded as in the 

Kalman filter, the HG observer is robust to uncertainties in modeling nonlinear system. 
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The performance with respect to noise need to be checked before the actual application, 

as will be demonstrated in numerical simulations in section 5.1.2. 

2.4 Implementation Issues 

In the implementation of model updating techniques, especially for the real-time model 

updating, many issues need to be understood and addressed. These issues, mostly in-

volved with digital computing, are important not only for the theory behind the technique, 

but also for its realization in the lab or field. This section begins with the introduction of 

some of the concepts, the computing software and hardware, then extends to the discus-

sion of the practical issues and their solutions. 

2.4.1 Hard Real-time Computing  

Real-time is a term describing certain computer features. Loosely speaking, real-time 

means a process is being executed “fast enough”, or an action is being taken immediately 

in the response to certain input. In the context real-time computing systems, the term 

“real-time” is defined in reference to a process with its timing needs to be controlled. A 

system is said to be real-time if all the foreground processes have been successfully ex-

ecuted before their deadlines. Besides these processes which determines the correctness 

of the execution, a system may contain background processes which have lower priorities 

than the foreground processes, and do not have critical time constraints (deadlines).  

 

Figure 2.17 Schematic illustration of a hard real-time system 
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There are two basic categories in real-time computing: hard real-time and soft real-time. 

The main difference is the degree of tolerance on missing the time constraints. In hard 

real-time system, missing a deadline is considered as system failure; whereas infrequent 

deadline misses are tolerable in a soft real-time system. Figure 2.17 is a schematic illu-

stration of a hard real-time system executed on a sample-by-sample basis. The time occu-

pied by foreground processes comprises scheduling overhead and the task execution time 

(TET). The background communication process is executed whenever the system is idle. 

Once the foreground processes exceed its time constraints, the execution is terminated 

with a failure message. The hard real-time feature is applied in computation system when 

failure to obtain the timely results would greatly comprise the overall performance and 

usefulness of the system, or even cause devastating, dangerous situations. The flight con-

trol system, engine control system and medical monitoring devices, these are all good 

examples of hard real-time systems. 

In civil engineering, hard real-time computing is a necessary component of a structural 

control system, which generates timely reaction to the disastrous loading events. Hard 

real-time computing is also applied in real-time hybrid tests, to preserve the dynamic fi-

delity of the test by integrating the physical and numerical components in real-time. As 

discussed in section 1.3, there are also needs for real-time SHM applications. In the Vin-

cent Thomas Bridge (VTB) monitoring project (see Table 1.2) (Masri, Sheng, Caffrey, 

Nigbor, Wahbeh, & Abdel-Ghaffar, 2004), a web-based SHM data logging system is ap-

plied. The researchers chose the DSL connection to stream the data in real-time to the 

subscriber with sampling frequency of 500Hz at a latency of 10–20 micro seconds (s). 

The data files are generated on the order of 125 MB/hour of the monitoring time. In 

(Lynch, 2004), the potential of applying real-time SHM with wireless sensor network 

(WSN) has also been considered. However, to date, no application has demonstrated the 

“hard” real-time computing feature in SHM applications. To see this, it is important to 

separate “autonomous monitoring” with “real-time monitoring”. Many SHM applications 

can provide continuous online monitoring data (like VTB project), and even analyze the 

data in an automatic uninterrupted manner for damage detection. But by the definition 

given above, “real-time monitoring” essentially means the interrogation of the structural 
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condition must be completed by the deadline. The deadline is usually dictated by the time 

when the new information (data sample) becomes available. However, its definition for 

different applications may vary by the way that the SHM system treats the new informa-

tion. If the new information is the modal information to be used to assess the structure 

condition, a time window is usually formed for modal identification, then the deadline 

can be chosen as the end of the coming time window. This implies the obtained assess-

ment is fresh for the duration of hundreds of sampling periods --- the time window dura-

tion. The other case is, that the deadline is considered as the time instant when the next 

data sample becomes available. This case is applied in the development of real-time 

model updating in this dissertation,. Apparently, the latter definition can provide the con-

dition assessment with higher resolution in time than the first one. Because most the po-

tential real-time model updating applications involve disastrous loading events where 

modal information is not reliable, the latter definition better fits the role of real-time 

model updating for rapid assessment under emergent situations. If not particularly men-

tioned, all the “real-time” related terminologies used hereafter refer to “hard real-time”. 

2.4.2 Implementation of Real-time Computing 

To implement real-time model updating, a suitable software and hardware environment is 

necessary. There are several essential components for a full-fledged real-time application: 

 Real-time operating system (RTOS) 

In general, a RTOS is responsible for managing the hardware resources, prioritizing 

the tasks and scheduling the task executions. A good RTOS can perform the above 

jobs with very precise timing and high degree of reliability, and meanwhile provides . 

 Software development environment 

Certain software packages are required for building the codes for the real-time appli-

cation. A user friendly software developing environment can provide a wide range of 

application programming interfaces (APIs) and necessary built-in graphical block sets 

to facilitate the code creation, support automatic code generation and downloading to 

the hardware platform. 
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 Underlying hardware platform 

The hardware environment includes PCs (CPU, RAM and non-volatile storage), ne-

cessary network communications,  and I/O BUS interface. 

The compatibility of the above components greatly influenced the overall performance of 

the real-time computing system. An efficient real-time system only adds a small overhead 

to the overall system. Some of the featuring indicators of system overhead are interrupt 

latency and I/O latency. These two overheads occupy the time for foreground process. In 

Figure 2.17, the interrupt latency is included in scheduling overhead, and I/O latency is 

included in the TET. 

There are many available solutions to construct a platform for real-time computing sys-

tem. RTLinux and RTAI are two notable open source RTOS, and two commercial ones 

are xPC Target™ from MathWorks
®
 and LabVIEW™ Real-Time Module from NA-

TIONAL INSTRUMENTS™.  

In this dissertation, the xPC Target™ and the Real-Time Workshop
® 

(RTW, now Simu-

link Coder™) (MATHWORKS, 2010) are used in the development of real-time nonlinear 

model updating technique. The RTW is capable of generating code from Simulink
®
 mod-

el and MATLAB
®
 functions. It also provides interface to interact with real-time envi-

ronment for tuning parameter and monitoring the execution process. xPC Target™ is a 

two (or more)-PC solution that allows user to achieve real-time performance of by creat-

ing the Simulink
®
 model on a “host PC”, then download and execute it on independent 

“target PCs”. Each of the “target PC”, or “target” for short, can achieve real-time perfor-

mance and all the hardware is completely dedicated to xPC Target™ tasking.  

There are two real-time execution modes in xPC Target™ kernel, interrupt mode and pol-

ling mode. By default, the system is executed under the interrupt mode, because it can 

provide the greatest flexibility and interact with the target while the application is execut-

ing in real time at high sample rates (MATHWORKS, 2010). However, the drawback of 

this mode is that it can introduce an overall interrupt latency of about 8s, and possible 

additional cache misses as well. For applications that require very small sample times (5-
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50s), polling mode is the best choice. But because all interrupts of the target PC are ful-

ly disabled during the execution of the target application in polling mode, all background 

tasks, including those for host-target communication, and controlling the target applica-

tion are all disabled. With multicore processors, some of the restrictions can be removed. 

In this dissertation, the highest sampling frequencies applied in the experimental study on 

real-time model updating is 2048Hz, and the applications are executed successfully under 

the default interrupt mode, therefore, exploration under polling mode is no longer neces-

sary. 

It is worth pointing out that, MathWorks
® 

also provides another one-PC solution, Real-

Time Windows Target™, to create and control real-time applications. It is very similar to 

xPC Target™, but it only uses a single Windows
®
-based PC as both a host and target. 

This implies the user cannot utilize the full power of the CPU as the way xPC Target™ 

does, because some of it has to be left as system overhead for running other applications. 

In creating the Simulink
®
 model for real-time nonlinear model updating experiments, 

several practical issues need to be considered. First, the real-time nonlinear model updat-

ing technique to be implemented is a nonlinear dynamic system, a custom block has to be 

built to realize the system functionality. There are many options to create the custom 

blocks, and in this study, an s-function block is created using C code (“C MEX S-

function”). Comparing with other options, such as “MATLAB Function Blocks” and 

“Subsystem Blocks”, “C MEX S-function” offers great flexibility in implementing the 

system functionality, and grants access to a wide range of APIs. The user can have better 

control of the overall performance by directly providing the most efficient code. Second, 

there are several factors to determine the system sample time. As discussed above, the 

sample time determines the deadline of real-time application, and therefore is an impera-

tive parameter. Refer to Figure 2.17, to implement a successful real-time application, the 

sampling period T has to be larger than or equal to the time occupied by foreground 

processes (overhead and TET). However, a small T is desirable for capturing the dynamic 

features of the system. Therefore, to understand the composition of the consumed time is 

important to determine the minimum achievable sample time. Table 2.2 gives the compo-
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sition of the possible sources that may affect the real-time computation. Generally speak-

ing, the TET, which includes the computation time to run the application and the listed 

overheads in Table 2.2, is nearly constant for an ideal real-time application. To improve 

the overall performance, the user should try to reduce or avoid the unnecessary overheads 

as listed in Table 2.2. The latencies of xPC Target™ interfaced hardware can be checked 

in an online guide at (MATHWORKS, 2010). Beside selecting the I/O boards with low 

latencies, disable the TET and extra data logging, minimize the host-target communica-

tions can also be considered. It is also important to point out that, some services on a 

PC‟s chipset, such as USB, CPU temperature monitoring managed by System Manage-

ment Mode (SMM), Plug-and-Play (PnP) operating system and Advanced Power Man-

agement, can cause long interrupts to the real-time task execution. If these services are 

not disabled in BIOS settings, interrupts with 200-300s latency, depending on the sys-

tem configuration, may show up as long period spikes in the TET log, which significantly 

compromise the real-time performance. Therefore, the BIOS setting is also an important 

factor when configuring the Target PC. 

Table 2.2 Overheads in xPC Target™ [summarized from (MATHWORKS, 2010)] 

Process Name Overhead Description 
Critical to  

Real-time 

TET 

Complete I/O latency 

Yes 
Data logging  

Asynchronous interruptions 

Parameter updating latency 

Interrupt 
Time required to measure TET  

Yes 
Interrupt latency 

Background process 

communication with host PC 

No Graphics 

UDP communication 

Based on the above description, the host PC and target PC are configured. The I/O device 

selected in this study is the “NI PCI 6251”, a high-speed multifunction M Series data ac-

quisition (DAQ) board from NATIONAL INSTRUMENTS™. It has 16 single-ended (8 

under differential mode) analog input channels with an 18-bit analog-to-digital converter 
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(ADC), and 2 analog output channels with 16-bit resolution. This board also contains 24 

digital I/O and two 32 bit general-purpose counter/timer, which are not fully exploited in 

this study. The highest sampling frequency supported by the analog input channels is 1M 

samples/sec for multiple channels (1.25M sample/sec for single channel). For both analog 

input and analog output, the timing accuracy is 50 ppm (parts-per-million, 10
–6

) of sam-

pling rate and the timing resolution is 50ns. The latency I/O data of “NI PCI 6251” work-

ing under the xPC Target™ is still missing from MathWorks
®
, but the nominal values 

show that (National Instruments Corporation, 2007) the settling time for analog input un-

der the range ±10V (working range in this dissertation) is 1.5μs for ±15 ppm of step, 

corresponding to ±1 LSB (least significant bit) for full scale step; the settling time for 

analog output is 2μs for 15 ppm (1 LSB). These are very small latencies compared to the 

chosen sampling frequency at 1024Hz (about 1000μs). On the software side, this I/O 

board is compatible with developer environments as LabVIEW™ with the LabVIEW™ 

Real-Time Module, and Real-Time Workshop
®
 with the xPC Target™. In addition, with 

the Real-Time Workshop
® 

Embedded Coder™ add-on, the current set up can be extended 

to various target environment, supporting on-target rapid prototyping boards, micropro-

cessors used in mass production, and embedded systems such as embedded computing 

unit (ECU). 

With the software (including RTOS) and hardware being selected, the test-bed can be 

constructed based on the purpose of the real-time application. There are two real-time 

application development techniques for testing new designs, rapid prototyping and hard-

ware-in-loop (HIL). As shown in Figure 2.18, suppose the goal is to develop a design to 

harness a testing system (plant). With rapid prototyping, the design is modeled on the 

host and deployed on to a real-time simulator to interact with the actual plant. In this way, 

the design can be optimized by evaluating the its performance of controlling the actual 

system in real-time. On the other hand, HIL verifies a built design by simulating a plant 

(or many plants) in real-time and assess the performance of the design by interacting it 

with the simulated plants. This approach is a cost-effective means to test the design under 

various complex conditions. And the chosen platform of Real-Time Workshop
®
 with the 

xPC Target™ is capable of realizing both implementations. 
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(a)  (b) 

Figure 2.18 Rapid prototyping (left) and hardware-in-loop (right) 

 

Figure 2.19 Framework of rapid prototyping applied in experimental studies 
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The ultimate objective of both rapid prototyping and HIL is to evaluate the combined per-

formance of the design and the plant. However, the difference is which one is the simu-

lated component in the test. In the current study, the goal is to test the nonlinear model 

updating method with actual systems as dampers and building models that could generate 

practical engineering nonlinearities. Rapid prototyping fits this goal. With the xPC Tar-

get™ being selected as the real-time simulator, the real-time application considered in 

this dissertation is outlined in Figure 2.19. This is the framework of the real-time experi-

mental studies in CHAPTER 6 and CHAPTER 7. 

2.4.3 Filtering in Real-time 

The data acquisition and processing aspects in SHM have direct impact on the quality of 

assessment results and ultimately on the performance of the system. Phenomena in the 

data sampling and processing, such as quantization error, aliasing distortion and spectral 

leakage, have been extensively studied. Considering the fact that most of the data col-

lected in SHM applications are contaminated by various levels of noise, it is the aim of 

this section to discuss the noise filtering and issues related to the implementation of filters 

in real-time. 

Noise contamination is a ubiquitous phenomenon. All measurements or signals collected 

from the ambient environment have been polluted by noise in one way or another. Re-

searchers often introduce noise into the numerical simulations to test the robustness of the 

design prior to conducting the actual experiment or field deployment. The simulation of 

noise, which is random in nature, is also an on-going research topic. There are many sto-

chastic processes applied as noise models, characterized by their underlying ensemble 

probability distributions and the time correlations. Appendix G presents the properties of 

the most widely used noise model --- white noise and issues regarding its numerical im-

plementation. Band-limited white noise is also the noise model used in the numerical 

study for real-time nonlinear model updating (in linear and nonlinear FE model updating, 

it is assumed that the noise in the data has already been considered during the modal 

identification procedure). 
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The energy level of noise affects the overall performance of the model updating results. 

This behavior can be seen from the numerical studies in CHAPTER 5. To minimize the 

potential influence of noise during the experimental studies, low-pass filters are usually 

applied to remove the high frequency content in the collected data while keeping the am-

plitude of the signal within the cutoff frequency unchanged. Such filters, if adopted in 

real-time applications, have to be causal systems, i.e. the filter output does not depend on 

any future input. On the other hand, in many filtering applications, it is preferred that the 

phase characteristics be zero or linear. However, for causal filters, it is impossible to have 

zero phase distortion. Therefore, to reduce the potential distortion to the signal, the phase 

characteristics of the filter becomes an important criterion in selecting the filter for real-

time applications. 

The distortion caused by the phase of the filter can be measured by the group delay 𝜏𝑔  

and phase delay 𝜏𝜙 . They are defined as 

 𝜏𝑔 𝜔 = −
𝑑

𝑑𝜔
 arg 𝐻 𝑒𝑖𝜔     (2.133) 

and 

 𝜏𝜙 𝜔 = −
1

𝜔
 arg 𝐻 𝑒𝑖𝜔     (2.134) 

where 𝐻 𝑒−𝑖𝜔   is the frequency response function of the filter; arg ⋅  is the phase re-

sponse. The effect of 𝜏𝑔  and 𝜏𝜙  can be understood using a modulated sinusoidal signal. 

Assume the input signal to the filter is 𝑥 𝑛 = 𝑠 𝑛 cos 𝜔0𝑛  and relatively narrowband, 

i.e. the bandwidth of 𝑠 𝑛  is much smaller than 𝜔0. The output signal 𝑦 𝑛  of the filter is 

approximately 

 𝑦 𝑛 =  𝐻 𝑒𝑖𝜔0  𝑠 𝑛 − 𝜏𝑔 𝜔0  cos 𝜔0 𝑛 − 𝜏𝜙 𝜔0    (2.135) 

This equation shows that the envelope of the signal is delayed by 𝜏𝑔 𝜔0  and the carrier 

signal is delayed by 𝜏𝜙 𝜔0 .  
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From equations (2.133) and (2.134), if the filter has linear phase response, then 𝜏𝑔 𝜔 =

𝜏𝜙 𝜔 = constant , which implies that all the frequency content receives the same 

amount of delay. Therefore, the filter cause no distortion of the output signal, and this is 

advantageous in many applications. 

There are two major categories of digital filters, finite impulse response (FIR) filter and 

infinite impulse response (IIR) filter. Multi-rate filters are not considered in this study. 

With finite impulse response, FIR filter is inherently stable, and it has advantage over the 

IIR filters in that FIR filters are easier to attain linear phase response. However, there is 

also a disadvantage that FIR filters usually require more computational cost than IIR fil-

ters to meet the same specifications. For example, with sampling frequency 512 Hz, Fig-

ure 2.20 shows the frequency responses of several low-pass filters. To achieve the similar 

pass band with a 2nd order Butterworth IIR filter at a cut-off frequency of 20 Hz, a 12th 

order FIR filter is required. To obtain the same attenuation level (-3dB) at the cut-off fre-

quency, a 19th order FIR filter is needed. 

 

Figure 2.20 Frequency responses of IIR and FIR filters 
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Here, the choice between IIR and FIR filters is a trade-off between filter performance and 

computational demand. Based on the discussion in sections 2.4.1 and 2.4.2, the computa-

tional cost has direct impact on the implementation of “hard” real-time computing. In the 

real-time application of this study, the IIR filter is therefore chosen due to its computa-

tional efficiency.  

 

Figure 2.21 Frequency responses of Butterworth filters 
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group delay and phase delay are plotted in Figure 2.21, Figure 2.22 and Figure 2.23, re-

spectively. 

The goal of this Butterworth filter design is to reduce the high frequency noise while pre-

serve the energy below 5 Hz. A cut-off frequency at 20 Hz is therefore selected. In Figure 

2.21, the 1st order filter (red dashed line) has a large transition band before fully attenuat-

ing the high frequency content. Nonetheless, if the 3rd order filter (black dash-dotted line) 

were used, Figure 2.22 and Figure 2.23 show the delays are too large and have significant 

nonlinear content. By cascading the 1st order filter with a 3rd order filter at cut-off 50 Hz 

(blue dotted line), the resulting filter can achieve better magnitude attenuation than the 

1st order filter, and fairly flat group delay and phase delay as well. 

 

Figure 2.22 Group delay of Butterworth filters 
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Figure 2.23 Phase delay of Butterworth filters 
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CHAPTER 3 

NUMERICAL STUDY 

OF LINEAR FE MODEL UPDATING 

In this chapter, the implementation of the proposed linear FE model updating technique is 

described in detail. A simple 1D beam, followed by a more advanced 2D wall model are 

constructed to demonstrate the capabilities of the proposed model updating technique. 

The goal is to introduce several essential concepts in the model updating technique and  

fully demonstrate the capabilities of this new approach as the complexity of the problem 

increases. 

3.1 Implementation Issues 

To represent physical structure that the technique would be implemented on, for this 

study a high-fidelity numerical model is applied to represent the true structure. 

To demonstrate the efficacy of the approach proposed herein, two numerical examples 

are considered. In each example, a refined FE reference model is built to represent the 

true behavior of the experimental structure. This is the structure on which damage is im-

posed. Additionally, a limited number of sensor measurements are assumed to be ob-

tained from this reference model, which will provide the partial mode shapes of those 

DOFs where the sensors are located. A relatively coarse model is constructed as the ana-

lytical model to be updated (the identification model). Damage is simulated by imposing 

a reduction in the material constants as described in equations (2.45) and (2.46). Also, 

this numerical study assumes all of the material constants in the analytical model at the 
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initial healthy state match up exactly with undamaged reference model, and thus the 

model tuning procedure is omitted here. 

A relatively simple example is first used for demonstration purposes. A 1D simply sup-

ported beam is considered with the following properties: density 2500kg/m
3
 and elastic 

modulus 3e10 N/m
2
; length 6m, cross-section area b×h = 0.2×0.45 m

2
. In this example, 

MATLAB
®
 is used for building the finite element model and performing the related nu-

merical calculations. 

For the second more complex example, a 2D plane stress model is built with the follow-

ing properties: density 2500kg/m
3
, elastic modulus 3.5e10 N/m

2
, shear modulus 1.2e10 

N/m
2
; size b×h×t = 3×4×0.2 m

3
, and fixed along the bottom boundary. The finite element 

model is built in ABAQUS and the optimization is conducted interactively with AB-

AQUS. This process is illustrated in Figure 3.1.  

 

Figure 3.1 Integration of Numerical Programs 

The combination of these tools represents a unique aspect of the proposed implementa-

tion. (ABAQUS 6.6.) is a powerful FE tool which can perform simulations using various 

solvers for large scale high-fidelity FE models. MATLAB
®
 has strong capabilities in nu-

merical analysis and a convenient user programming interface. By utilizing ABAQUS 

parametric input and a C++ API, MATLAB
®
 is able to access the ABAQUS output data-

base, finish the necessary iterations for optimization, and pass the updated parameters 

back to ABAQUS for the next simulation. 

ABAQUS MATLAB 
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3.2 1D Beam Model Updating 

In this illustrative example, the reference model has 60 Euler- Bernoulli beam elements, 

and the identification model has 30 elements with the same type. Damage is simulated 

(see Figure 3.3) with a reduction of selected elastic moduli 𝐸𝑖  in the reference model. 

Elements 5-8, 25-34, 41-46 of the reference model are “damaged” by 20%, 50% and 40%, 

respectively. These correspond to elements 3-4, 13-17, 21-23 of the identification model. 

Nine equally-spaced responses (representing sensor measurements) are obtained using 

the reference model (see Figure 3.2). Also, to represent a realistic situation, only the first 

5 modes are used for the model updating procedure. For each of the 30 elements in the 

identification model, one damage parameter is included, associated with the reduction in 

elastic modulus. Thus, there are 30 original damage parameters 𝐝 in the identification 

model. 

 

Figure 3.2 Reference and identification model of 1D beam 

The mode shapes obtained from the sensor measurements are limited to having only 11 

DOFs (9 from sensors and 2 from two supports). Before simulating damage in the refer-

ence model, the model expansion procedure is first validated by comparing the first 5 ex-

panded mode shapes obtained from the 11 DOFs sampled from the reference model with 

the first 5 mode shapes of the identification model at the initial state. While comparing 
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the difference in natural frequencies between the reference model and identification mod-

el, a criterion 𝐽 is set as 

 𝐽 =
 ref− id 

ref
⋅ 100% (3.1) 

 

Figure 3.3 Damage imposed on the 6m beam 

Table 3.1 First 5 NF and Mode Shape comparison before damage applied 

Modes 
NF-Ref (Undamaged) 

Hz 

NF-Ana (before) 

Hz 

J 

% 

MAC 

 (before) 

1 19.64 19.64 8.1e-6 1 

2 78.54 78.54 1.0e-4 1 

3 176.71 176.72 6.0e-4 1 

4 314.16 314.17 2.0e-3 1 

5 490.88 490.90 4.9e-4 1 

Table 3.1 shows the first 5 natural frequencies and mode shapes of reference model com-

pared to those of the identification model before damage applied. The results are satisfac-

tory (see Figure 3.4). The modal assurance criterion (Allemang & Brown, 1982) (MAC) 

values provided here also demonstrate good agreement of the expanded mode shapes 

from the reference model with those of the identification model. This outcome also indi-
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cates that the model tuning step can be omitted when the identification model is selected 

appropriately. Equation (3.2) defines the MAC values between measured mode shape 𝚽m  

with analytical mode shape 𝚽a . 

 MAC =
 𝚽m

T 𝚽a 
2

 𝚽m
T 𝚽m   𝚽a

T𝚽a 
 (3.2) 

Prior to optimization, the subset selection procedure is carried out. 18 out of a total of 30 

elements are selected as possible damaged elements (indicated by circled elements Figure 

3.3). This process reduces the number of damage parameters to be updated, improving 

the efficiency. In this case the selected subset clearly contains the actual damaged ele-

ments. 

 

Figure 3.4 Identified damage distribution with 10 damage elements 

Finally, a triangular damage function (see Figure 3.4) is applied to the selected elements, 

reducing the number of damage parameters for optimization. The identified damage is 

shown in Figure 3.4 with 10 damaged elements. Comparing Figure 3.3 with Figure 3.4, 

the damage is successfully located and quantified through the proposed model updating 

procedure. The natural frequencies and mode shapes before and after updating are listed 

in Table 3.2. MAC values with respect to the measured mode shapes are used to measure 

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beam Length

Id
e
n
ti
fi
e
d
 d

a
m

a
g
e

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Ele. No. 

damage parameter

damage function

damage value



102 

 

the correlation between different mode shape groups. The results in Table 3.2 also show 

that the proposed approach effectively updated the identification model in terms of the 

modal information from the first 5 modes and sampled with limited number of sensor 

measurements. 

Table 3.2. First 5 NF and Mode Shape comparison after updating  

Modes 

NF-Ref  

(damaged) 

Hz 

NF-Id 

(before) 

Hz 

NF-Id  

(after) 

Hz 

J  

(before) 

% 

J  

(after) 

% 

MAC 

 (before) 

MAC 

 (after) 

1 16.5 19.6 16.5 18.7 0.02 0.999 1 

2 72.7 78.5 72.4 8.0 0.39 0.995 1 

3 156.1 176.7 156.5 13.2 0.24 0.984 0.999 

4 292.2 314.2 290.3 7.5 0.64 0.993 0.998 

5 437.4 490.9 435.2 12.2 0.49 0.984 0.996 

3.3 2D Plane Stress Model Updating 

 

Figure 3.5 Reference and identification model of a 2D wall 

A more complex 4m×3m 2D plate representing a shear wall with a horizontal point load 

at the top left corner is selected as the second illustrative example. The reference model 

has 10×12=120 8-node isoparametric plane stress elements, and the identification model 

has 5×6=30 8-node isoparametric elements (see Figure 3.5). Realistic damage for this 

example is simulated by reducing both the elastic (𝐸) and shear (𝐺) moduli based on the 

sensors



103 

 

stresses in an assumed loading state (see Figure 3.10).  Therefore, there are 30+30=60 

original damage parameters in the identification model to be updated. 

3.3.1 Challenges in High Dimension Case 

In a higher dimension case, as mentioned in section 2.1.3, the neighboring elements dis-

play significant similarities in the sensitivities of the dynamic parameters (frequencies 

and mode shapes) which would yield a „collinearity‟ problem. As shown in Figure 3.6, 

suppose elements a and 1-8 all suffer damage. The neighboring 8 elements around a will 

have similar sensitivities to the damage parameters as element a. Thus, due to the similar-

ities in their sensitivities, once element a is selected as a possible candidate by subset se-

lection, the neighboring 8 elements are potentially eliminated from the damage subset by 

the orthogonalization process in equations (2.18) and (2.19). 

 

Figure 3.6 A group of elements in a 2D FE model 

 

Figure 3.7 Influence of mesh on sensitivities of neighboring elements in 2D case 
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1 and 4 is 0.69, which is much smaller compared to the correlation from elements 5 and 7 

in the refined mesh 0.96. 

However, the missing damage parameters can be recovered by a “smoothing” process 

provided by damage functions. The predetermined damage distribution will force a 

smooth interpolation process among the neighboring elements, and the correct damage 

distribution will be preserved by the continuous damage pattern. 

3.3.2 2D Model Updating Results 

In the 2D case, 40 sensors are placed at 20 locations on this wall-typed structure (X and 

Y directions), and the first 15 modes are used for updating (see Figure 3.5). Applying the 

same procedure as 1D case, validation of the model expansion process is first conducted. 

The modal eigenvalue and expanded mode shapes of the reference model are compared 

with those of the identification model. Similar criteria as those in equation (3.1) are used 

for a comparison (see Table 3.3 and Figure 3.9) 

Table 3.3 First 15 Eigenvalues and Mode Shapes comparison before damage applied 

Modes 
EigVal-Ref 

 (Undamaged) 

EigVal -Id  

(before) 
J (%) 

MAC-Ana 

 (before) 

1 2.7e5 2.7e5 0.23 1 

2 2.2e6 2.2e6 0.04 1 

3 2.5e6 2.6e6 0.33 1 

4 8.9e6 8.9e6 0.37 1 

5 1.2e7 1.2e7 0.17 1 

6 1.3e7 1.3e7 0.74 1 

7 1.5e7 1.5e7 0.06 1 

8 2.0e7 2.0e7 0.39 0.999 

9 2.2e7 2.2e7 0.18 0.999 

10 2.5e7 2.5e7 0.47 0.999 

11 2.6e7 2.6e7 0.76 0.999 

12 2.8e7 2.8e7 2.13 0.991 

13 3.7e7 3.7e7 2.04 0.987 

14 3.8e7 3.9e7 2.50 0.985 

15 4.2e7 4.3e7 1.56 0.993 
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As expected, at the initial state, the identification model can represent the reference mod-

el well in terms of the chosen dynamic information. However, there are clearly  modeling 

errors present. Generally speaking, the higher the mode, the larger the error. Considering 

that the error in the first 15 modes are relatively small (see the 𝐽 values in Table 3.3), this 

approach will neglect the effects in higher modes just as in the 1D example case. 

Table 3.4 First 15 Eigenvalues and Mode Shapes comparison after damage applied 

Modes 
EigVal-Ref 

 (damaged) 

EigVal-Id  

(before) 

EigVal-Id 

 (after) 

J (before) 

% 

J (after) 

% 

MAC  

(before) 

MAC 

(after) 

1 1.8e5 2.7e5 1.8e5 52.82 1.24 0.99 1.00 

2 1.6e6 2.2e6 1.7e6 33.60 4.38 0.87 0.76 

3 2.2e6 2.6e6 2.0e6 17.21 9.89 0.86 0.87 

4 6.9e6 8.9e6 7.7e6 29.35 11.83 0.70 0.94 

5 1.1e7 1.2e7 1.1e7 8.47 2.95 0.95 0.82 

6 1.1e7 1.3e7 1.1e7 16.77 0.42 0.83 0.28 

7 1.3e7 1.5e7 1.4e7 8.91 2.48 0.91 0.90 

8 1.6e7 2.0e7 1.7e7 26.00 9.99 0.71 0.73 

9 1.8e7 2.2e7 1.9e7 20.78 4.06 0.66 0.84 

10 2.1e7 2.5e7 2.0e7 19.05 3.79 0.51 0.84 

11 2.3e7 2.6e7 2.4e7 14.53 3.43 0.77 0.87 

12 2.5e7 2.8e7 2.4e7 14.04 0.96 0.78 0.83 

13 3.1e7 3.7e7 3.3e7 19.61 6.38 0.35 0.72 

14 3.5e7 3.9e7 3.6e7 12.76 2.78 0.06 0.76 

15 3.7e7 4.3e7 3.8e7 15.77 3.67 0.14 0.28 

After subset selection, for the 30 damage parameters associated with elastic modulus 𝐸, 6 

parameters have been removed; for the 30 damage parameters associated with shear 

modulus 𝐺, 12 parameters have been removed from the damaged subset (see Figure 3.8) 

However, certain damage parameters are incorrectly removed due to the „collinearity‟ 

among the neighboring element groups, such as elements 2, 8 and 9 for the elastic mod-

ulus 𝐸, elements 9 and 21 for the shear modulus 𝐺. 

After applying the damage functions and performing the optimization, the FE model up-

dating results are shown in Table 3.4 (5 out of 15 modes are listed) and Figure 3.9. The 

corresponding damage identification results are shown in Figure 3.10. The damage is cor-
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rectly located and quantified for both elastic (𝐸) and shear (𝐺) moduli. Only 21 steps are 

needed for the updating process to converge, and the convergence for the value of objec-

tive function is shown in Figure 3.11. 

 

Figure 3.8 Subset selection result for 2D case 

   

Figure 3.9 The MAC values before (left) and after (right) updating 

Considering the large scale of this problem and of the number of damage parameters and 

DOFs involved, to demonstrate the improvement in condition and efficiency provided by 

the subset selection and damage functions, it would be illustrative to compare the above 

results with the case using no subset selection or damage functions. The results for the 

case in which these tools (subset selection and damage functions) are not used are shown 

in Figure 3.12. Note that the results are not nearly as accurate in determining the damage 
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location and quantity, although considerably more computational effort (60 parameters 

involved in the updating, and 40 iteration steps are used to converge and approximately 8 

times more floating point operations) was expended.  

  

(a)    (b) 

 

(c)     (d) 

Figure 3.10 Comparison of imposed and identified damage  

a) Imposed damage (𝐸), b) Identified damage (𝐸) 

 c) Imposed damage (𝐺), d) Identified damage (𝐺) 
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Figure 3.11 Convergence of objective function value 

3.4 Summary 

An improved approach for linear FE model updating in complex structures has been pro-

posed. This method incorporates the use of the SEREP algorithm for model expansion, 

allowing a minimal amount of sensors to be employed in real-world applications. Subset 

selection and damage functions are used to reduce the number of parameters to be opti-

mized, and smooth the damage space. A flexibility-based objective function for model 

updating problem has been used, and more importantly, the associated gradient and Hes-

sian matrix calculation has also been derived with the consideration of the influence of 

model expansion. A trust-region optimization technique is employed, and ABAQUS is 

used interactively with MATLAB to solve the optimization problem. The proposed me-

thod has been applied to both 1-D beam problem and 2-D plane stress problem, and in 

both cases satisfactory model updating results have been obtained and damage has been 

successfully localized and quantified. It has shown that the proposed method is an effi-

cient technique for solving higher order model updating problems. 
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(a)    (b) 

  

(c)     (d) 

Figure 3.12 Updating results without subset selection and damage functions 

  a) Imposed damage (𝐸), b) Identified damage (𝐸) 

  c) Imposed damage (𝐺), d) Identified damage (𝐺) 
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CHAPTER 4 

NUMERICAL STUDY 

OF NONLINEAR FE MODEL UPDATING 

This chapter focuses on the challenging task of updating nonlinear models for civil engi-

neering structures. A nonlinear hysteretic material model is constructed to portray the 

fundamental hysteretic behavior of a reinforced concrete shear wall. The implementation 

and verification of a systematic nonlinear FE model updating methodology are described. 

The goal is to perform damage detection and, more importantly, to apply the updated 

nonlinear model for prognosis of the structural behavior. 

4.1 Implementation Issues 

To demonstrate the efficacy of the approach proposed herein, two numerical examples 

are considered. The first example is to verify the RC material model adopted in this study 

(see section 2.2). A reinforced concrete shear wall tested by (Pilakoutas & Elnashai, 1995) 

was selected to demonstrate the capability of the RC material model. Both a refined and a 

coarse meshed FE models are constructed and simulated with material parameters pro-

vided in (Pilakoutas & Elnashai, 1995). In the second example, the refined FE reference 

model from the previous example is used as the representation of the true experimental 

structure, which is the one where damage is imposed. Additionally, a limited number of 

sensor measurements are assumed to be obtained from this reference model, which will 

provide the partial mode shapes of those DOFs where the sensors are located. On the oth-

er hand, the coarse meshed model is considered as the analytical model to be updated (the 

identification model).  
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Damage is simulated by imposing bi-directional Northridge earthquake excitation 

through simulation. In this chapter, the “damage” is defined as the reduction of zero-

crossing stiffness. Because the focus of this numerical study is to investigate the nonli-

near FE model updating methodology, the modal identification is simply replaced by 

solving eigenmodes of the resulting damaged reference model when it is fully unloaded. 

4.1.1 General Numerical Procedure 

The procedure to verify the proposed nonlinear FE model updating technique is illu-

strated in Figure 4.1. Prior to imposing the damage on the structure (reference model), the 

analytical model is correlated with the undamaged reference model to make sure the 

healthy baseline is achieved (model tuning). This step is conducted by matching their 

responses under the same cyclic displacement input, and their modal properties as well. 

  

Figure 4.1 Flow chart of the numerical procedure 
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As shown in Figure 4.1, the entire procedure consists of three stages. In the first stage 

“Nonlinear FE Modeling and Analysis”, both reference and analytical models are built 

using the same material parameters, and then the damage is imposed to the reference 

model by enforcing a damaging loading condition. The modal information of both mod-

els are fed into the objective function block, which is the beginning of the second stage. 

In the second stage --- “FE Model Updating”, the discrepancies between the damaged 

reference model and the analytical model are compared in the scores of the objective 

function values. The analytical model is updated using a chosen optimization program 

with iterative evaluations of the objective function value. The final stage, the “Nonlinear 

FE Analysis Restart”, is designed to check the efficacy of the updated model. By apply-

ing a new damaging input to both damaged reference model and the updated analytical 

model, the obtained responses are compared with each other. 

4.1.2 Simulation Package Development 

As mentioned in section 2.2, the concrete and reinforcing steel material models applied in 

this study originally are from (Mohd Yassin, 1994) and OpenSees(Mazzoni, McKenna, 

Scott, & Fenves, Sep. 2006). But the general updating analysis procedure as described in 

section 4.1.1 is not available in OpenSees. Besides the regular function of executing the 

FE analysis, the capabilities of extracting modal properties, running optimization and res-

tarting the analysis are also essential to the overall procedure. With this consideration, a 

self-sustained simulation package is developed using MATLAB
®
.  

The developed package has the functionality of executing FE analysis for both static and 

dynamic transient analysis. More importantly, user has complete access to all the infor-

mation in the entire FE domain (see Figure 4.2), therefore, it can be easily integrated with 

any optimization code involved in model updating process, and it also supports to restart 

analysis of a previously analyzed model or an updated model. This MATLAB
®
 -based 

simulation package contains the following components (see Figure 4.2): 

 Geometry 
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“Geometry” contains the lists of points and lines, which describes the necessary spa-

tial information regarding the dimensions of the model.  

 Material 

“Material” provides interface for user to input all the material parameters (e.g. elastic 

modulus, density, required constants defining nonlinear model --- section 2.2), and 

the material models that control the behavior of the model, such as the load-

ing/unloading rules of a nonlinear hysteretic model. Currently, the available nonlinear 

models are the concrete model and hysteretic model from OpenSees. 

 

Figure 4.2 Composition of the MATLAB simulation package developed 

 FE Domain 

With the information from “Geometry” and “Material”, the FE domain can be con-

structed. It consists of the FE elements (including Gaussian Points if there is any), 

nodes (DOFs), boundary constraints information and defined load cases. This is the 
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core of the simulation package. The available elements are uniaxial zero-length ele-

ment, 3D beam element and 2D isoparametric 8-node quadrilateral element. The only 

constraint type considered right now is the transformation constraint. The load cases 

can be defined with displacement control or load control. 

 FE Analysis 

“Analysis” is responsible for analyzing the structural model behavior by acting the 

defined load case on the built model. Based upon the nature of the analysis is static or 

dynamic, the analysis handler is controlling the incremental analysis step by request-

ing a time-stepping scheme, for example, the Newmark-β method. The resulting sys-

tem of equations, which could be nonlinear, can be solved by numerical solvers. Cur-

rently, the types of analysis it can support are eigenanalysis, static and dynamic tran-

sient analysis. The current nonlinear equation solver is Newton-Raphson. The dynam-

ic time-stepping scheme is the Newmark-β method. 

In the current development phase of this package, only the necessary functionalities are 

implemented. However, the intent of this simulation package is to build a framework for 

conducting the similar updating analysis. Each component marked with shaded area in 

Figure 4.2 is written as a classification system with its own pattern and functionalities 

using the Object-Oriented programming in MATLAB
®
. Therefore, if a new component is 

developed by the user with the compatible interface, it can be seamlessly integrated to 

this simulation package. 

In the following numerical examples, all the related numerical simulations are coded in 

MATLAB. The FE solution algorithm is Newton's method, and the numerical integration 

scheme is Newmark-β method, with constants β = 0.25 and γ = 0.5. The element used in 

this paper is 8-node isoparametric plane stress element, with 4 Gaussian integration 

points in each element to perform a reduced integration.  
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4.2 Cyclic Test on Shear Wall 

The shear wall selected to compare with the numerical simulation is SW4, one of the 

tested shear wall in (Pilakoutas & Elnashai, 1995). As shown in Figure 4.3, the walls 

were rectangular with concealed boundary elements at each end of the wall. The height-

to-width ratio of the walls is 2. Dimension details are provided in Figure 4.3. The materi-

al properties and reinforcement details of SW4 are summarized in Table 4.1, with β [see 

equations (2.56) and (2.57)] as the material constant shown in Figure 2.5. 

 

Figure 4.3 Dimension details of the SW4 shear wall  units: mm (inch) 

Table 4.1 Material properties and reinforcement characteristics used for SW4 analysis 

(Pilakoutas & Elnashai, 1995) 

Zone 

Concrete 
Reinforcement 

Horizontal Vertical 

𝑓𝑐 ′ 
MPa 
 ksi  

Peak strain 

 μϵ  
𝜌 
 %  

𝑓𝒚 

MPa 
 ksi  

β 
𝜌 
 %  

𝑓𝒚 

MPa 
 ksi  

β 

Web 
36.9  

(5.4) 
2093 0.39 

550 

(79.8) 
0.65 0.31 

550 

(79.8) 
0.65 

Boundary 
36.9 

(5.4) 
2093 0.78 

550 

(79.8) 
0.65 2.83 

500 

(72.5) 
0.5 

During the experiment, a severe cyclic loading scheme was used, at a very slow rate. The 

displacement was applied through a top beam designed to uniformly distribute the load. 

At each new displacement level, the displacement level has been increased by 2 mm 

(0.079 in) in both directions. Because the top and bottom beams were designed for im-
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posing the boundary conditions, and the focus of this study is to investigate the RC ma-

terial model and later to update it, only the web and boundary elements are modeled in 

the FE simulation. The top beam is replaced by considering a uniformly distributed dis-

placement input at the top nodes, and the bottom beam is replaced by fully constrained 

(fix x,y direction) nodes at the bottom nodes. Two FE models are built based on the same 

material parameters, one is refinedly meshed (reference model) with 4×10=40 elements, 

the other one is coarsely meshed  (analytical model for updating) with 2×10=20 elements 

(see Figure 4.6). The simulation results of both reference and analytical models are com-

pared with experimental results in Figure 4.4. 

As shown in Figure 4.4, the simulated result agrees well with experimental result in terms 

of the shape of the hysteretic curves obtained. However, a closer examination shows that 

the simulation gives an envelope with a slight ascending trend instead of a flat-top in the 

experimental response, also the displacement at the maximum load is also different 

[10mm in Figure 4.4 (a) and 20mm in Figure 4.4 (b)]. A comparison of the responses of 

the reference model and analytical model shows that they provide nearly identical results, 

which indicates that the modeling error between reference and analytical models due to 

different mesh schemes is negligible. 

  

(a) reprint with permission from ACI 

Figure 4.4 Comparison of (a) experimental response and (b) simulated response of refer-

ence (Ref) model and analytical (Ana) model (cont.) 
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(b) 

Figure 4.4 Comparison of (a) experimental response and (b) simulated response of refer-

ence (Ref) model and analytical (Ana) model 

4.3 Model Updating and Future Prediction 

 

Figure 4.5 Scaled Northridge earthquake  

(upper: horizontal direction; lower: vertical direction) 
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Prior to imposing the damage on the reference model, the validation of the model expan-

sion process is conducted. The modal natural frequencies and expanded mode shapes of 

the reference model are compared with those of the analytical model. The results are 

summarized in Table 4.2, with the same criteria as equation (3.1) applied. The compari-

son shows the identification model represents the reference model well in terms of the 

selected dynamic information. Besides Figure 4.4, this is another perspective of checking 

if the identification model matches the healthy baseline. 

Table 4.2 First 15 natural frequencies and mode shapes comparison  

before damage applied 

Modes 

NF-Ref 

Hz 

 (Undamaged) 

NF -Id  

Hz 

(before) 

J (%) 
MAC-Ana 

 (before) 

1 243.22 243.27 0.02 1.00 

2 838.32 838.33 0.00 1.00 

3 932.57 934.07 0.16 1.00 

4 1954.21 1964.15 0.51 1.00 

5 2504.33 2505.43 0.04 1.00 

6 2509.75 2519.27 0.38 1.00 

7 2901.56 2898.50 0.11 1.00 

8 3192.84 3192.51 0.01 1.00 

9 3254.21 3301.34 1.45 0.99 

10 3347.27 3345.66 0.05 1.00 

11 3539.44 3562.44 0.65 0.98 

12 3799.14 3814.59 0.41 1.00 

13 4192.94 4207.44 0.35 1.00 

14 4326.57 4485.31 3.67 0.98 

15 4498.36 4582.40 1.87 0.99 

In order to simulate a damage scenario, the reference model (see Figure 4.6) is excited bi-

directionally (horizontal and vertical) with a scaled Northridge earthquake [Figure 4.5, 

(Pacific Earthquake Engineering Research Center, 2000), documented on 1994/01/17, W 

Lost Canyon, USC Station 90057]. For the simulation, the density of the RC shear wall is 

2500kg/m
3
, the Raleigh damping coefficients are chosen such that the resulting modal 

damping ratios corresponding to the first two modes are 5%. The original earthquake 
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record is sampled with 100 Hz, and lasts for 20 seconds. To let the shear wall fully un-

load, an extra 5-second “settling time” is appended to the input at the end (see Figure 4.5). 

Considering the tested shear wall is actually a scaled model, the earthquake excitations 

are also scaled to impose a noticeable amount of damage. 

After the structure unloads to zero loading condition, the cracks and final residual defor-

mation are clearly shown in Figure 4.6. There are 15 sensor locations with 2×15=30 sen-

sors measuring accelerations of both x and y directions. A presumed modal identification 

procedure is conducted to provide the modal information with low level excitations. This 

procedure is replaced by an eigenanalysis in this updating study, so that the performance 

of the proposed updating method can be explored without considering the influence from 

other sources, such as noise in the data and possible environmental influence. To update 

the analytical model, considering the characteristics of the current RC model described in 

section 2.2, the following assumptions have been made: 

 After the damaging inputs, the behavior of reinforcing steel components still re-

mains in the linear regime. This assumption implies that the structure only suf-

fered mild damage with no reinforcement yielding. 

 After the response settles, the damage in the concrete component is defined as a 

reduction of the instantaneous stiffness Eci  compared to its original linear elastic 

stiffness Ec  i.e.  

  Eci =  1 − 𝑑 ⋅ Ec  (4.1) 

 where 𝑑 is the damage index. 

 The directions of the cracks on the structure (reference model), which indicate the 

directions of the principal strains in each element, are recorded and considered as 

known variables passed to the model updating procedure. 
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(a)     (b) 

Figure 4.6 Finite element models (a: reference model, red lines form the residual defor-

mation after earthquake; b: analytical model)  

filled blue dots indicate sensor locations, bold black lines indicate cracks 

With the above assumptions, the model updating procedure is carried out by first identi-

fying the instantaneous stiffness of each component after the response settles. This pro-

cedure is executed with the modal information from only the first 15 modes. Using the 

same objective function stated in equation (2.5), the damage indices are identified after 

45 iteration steps (see Figure 4.7). Figure 4.8 shows that damage is mainly concentrated 

at the lower corners of the wall, and this distribution matches well with that in the refer-

ence model.  
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Figure 4.7 Objective function values 

With the identified instantaneous stiffness, the resulting modal properties of the identifi-

cation analytical model are compared with those of damaged reference model (see Table 

4.3). The MAC value correlation plots are shown in Figure 4.9 for comparison purpose. 

All the results indicate both natural frequencies and mode shapes of the analytical model 

with identified instantaneous stiffness correlate well with the damaged reference model, 

as the MAC value plot for the updated model showed the correlation to reference model 

is close to 1 for the first 12 modes. The damage has been quantified and located. 
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(a) 

 

 (b) 

Figure 4.8 Damage distribution of FE models 

 (a: reference model; b: analytical model) 
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(a)      (b) 

Figure 4.9 The MAC values before (a) and after (b) 

applying the identified instantaneous stiffness 

Usually, the analytical model would be considered as a linear model and updated with the 

instantaneous stiffness. In this study, since the nonlinear FE model is applied, with the 

identified instantaneous stiffness and the features of the material model described in sec-

tion 2.2, certain historical variables characterizing the nonlinear model can be further up-

dated, and the updated nonlinear model can be used for damage prognosis purposes. 

Based on the aforementioned assumptions, given the identified instantaneous stiffness Eci  

of the concrete component, the corresponding maximum strain difference εmax  is calcu-

lated as (refer to Figure 4.10) 

 εmax =   

εt              if 𝑑 = 0, no damage
εtu Ets

Ets + Eci
              if 0 < 𝑑 ≤ 1

  (4.2) 

where Ets > 0 is the tension stiffening modulus, chosen as 1/20 of concrete elastic mod-

ulus  Ec ; Eci  is the identified instantaneous stiffness given in equation (4.1); εt  is the 

strain corresponding to the tensile strength ft , which is given as  

 εt =
ft

Ec
 (4.3) 
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Figure 4.10 Illustration of Eci  and εmax  

and εtu  is the ultimate tensile strain, which can be calculated as 

 εtu =
ft

Ec
+

ft

Ets
 (4.4) 

To demonstrate the capability of the updated nonlinear model in terms of damage prog-

nosis, bi-directional random accelerations both with duration 5 seconds and peak accele-

ration around 250 m/s
2
 are applied to the damaged reference model, and compare its re-

sponse with the ones produced by the updated nonlinear model, as well as the updated 

linear model. This step corresponds to the “Nonlinear FE Analysis Restart” stage in Fig-

ure 4.1. In Figure 4.11, it is shown that updated nonlinear model provides a more accu-

rate prediction in terms of the lateral response of the node located at the top-left corner. 

The root-mean-square (RMS) of the absolute error ( ref− updated ) for the nonlinear 

updated model is 4.6×10
-6

 m, while for the linear updated model is 2.6×10
-5

 m. The rela-

tive error measured by RMS error RMS ref   for the nonlinear updated model is 5.4%,  

and 30.9% for the linear updated model. 

4.4 Summary 

By constructing a nonlinear RC concrete material model, the fundamental nonlinear be-

havior of a RC shear wall is described in this study. A proposed FE model updating me-
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thodology is applied to the nonlinear RC model, to locate and quantify the damage, and 

further, update the nonlinear RC model for damage prognosis. The experimental data of a 

RC shear wall has been utilized to verify the accuracy of the RC nonlinear model. Then, 

the proposed model updating methodology has been successfully applied to the shear 

wall. With the updated model, not only the imposed damage can be located and quanti-

fied, but the goal of damage prognosis can also been achieved. 

 

Table 4.3 First 15 natural frequencies and mode shapes comparison 

before and after applying the identified instantaneous stiffness 

Modes 

NF-Ref 

Hz 

 (damaged) 

NF-Id 

Hz 

(before) 

NF-Id 

Hz 

 (after) 

J (before) 

% 

J (after) 

% 

MAC  

(before) 

MAC 

(after) 

1 178.08 243.27 178.14 36.61 0.04 1.00 1.00 

2 678.91 838.33 671.76 23.48 1.05 0.85 0.98 

3 747.97 934.07 738.80 24.88 1.23 0.86 0.97 

4 1687.39 1964.15 1705.80 16.40 1.09 0.85 0.96 

5 2212.53 2505.43 2192.65 13.24 0.90 0.93 0.96 

6 2277.19 2519.27 2289.49 10.63 0.54 0.81 0.94 

7 2895.05 2898.50 2891.34 0.12 0.13 0.98 0.99 

8 2915.65 3192.51 2910.87 9.50 0.16 0.00 0.96 

9 3163.04 3301.34 3163.35 4.37 0.01 0.00 0.96 

10 3204.17 3345.66 3205.50 4.42 0.04 0.10 0.90 

11 3284.34 3562.44 3292.18 8.47 0.24 0.08 0.99 

12 3473.40 3814.59 3473.21 9.82 0.01 0.64 0.96 

13 3749.07 4207.44 3772.31 12.23 0.62 0.02 0.55 

14 3850.00 4485.31 3851.73 16.50 0.05 0.00 0.57 

15 3966.42 4582.40 3903.44 15.53 1.59 0.34 0.67 
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(a) 

 

 (b) 

Figure 4.11 Comparisons of responses in restart analysis 

(a): updated nonlinear model; (b): updated linear model 
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CHAPTER 5 

NUMERICAL STUDY OF 

 REAL-TIME NONLINEAR MODEL UPDATING 

This chapter presents numerical studies demonstrating the real-time nonlinear model up-

dating techniques developed in this dissertation. There are three different sets of prob-

lems considered herein. The first set considers real-time updating of the original Bouc-

Wen model using UKF, EKF and HG techniques; the second set considers updating of a 

phenomenological MR damper model; and the final set considers updating of a modified 

Bouc-Wen model with degraded unloading stiffness and strength, expressed in equation 

(2.128). In the second and third sets, only the UKF is applied due to its capabilities for 

updating highly nonlinear structural dynamic models. The updated results are examined 

by comparing the relative errors under various noise levels in the root-mean-square (RMS) 

sense. 

5.1 Updating of The Original Bouc-Wen Model 

Consider the following single degree-of-freedom (SDOF) nonlinear Bouc-Wen system 

subject to an earthquake acceleration input 𝑥 𝑔 𝑡 , 

 𝑚𝑥  𝑡 + 𝑐𝑥  𝑡 + 𝛼𝑧 𝑡 = −𝑚𝑥 𝑔 𝑡  (5.1) 

where 𝑧 𝑡  is the Bouc-Wen hysteretic component that can be described by 

 𝑧 = 𝑥 − 𝛽 𝑥  𝑧 𝑧 𝑛−1 − 𝛾𝑥  𝑧 𝑛  (5.2) 
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This model is a normalized Bouc-Wen model as described in equation (2.109). In equa-

tion (5.1), 𝑥 𝑔 𝑡  is the El Centro earthquake with the peak ground acceleration (PGA) 

scaled to 3g, 𝑚 = 120 kg, 𝑐 = 0.134 kN s/m, and 𝛼 = 15 kN/m. The parameters of the 

Bouc-Wen system are chosen as 𝛽 = 4,  𝛾 = 2, and 𝑛 = 2. For the EKF and UKF updat-

ing schemes, the absolute acceleration 𝑥 + 𝑥 𝑔  is chosen as the output measurement of the 

system. For the HG observer, the displacement 𝑥 is the output measurement. To simulate 

service conditions, 4 seconds zero excitation is added at the beginning of the scaled 

earthquake record (see Figure 5.1) . The simulation is conducted with fixed time step of 

0.01 s, and entire duration is 50 s. 

 

Figure 5.1 Scaled El Centro earthquake input (PGA 3g) 

The state vector augmented with parameter vector is defined as 

 
𝐱 =  𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 T   

=  𝑥 𝑥 𝑧 𝛼 𝛽 𝛾 𝑐 𝑛 T  
(5.3) 

The nonlinear function 𝐅 𝑡, 𝐱 𝑡 ,𝐮 𝑡   in equation (2.63) can be written based on equa-

tion (5.1) and (5.2) as 
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 𝐅 𝑡, 𝐱 𝑡 ,𝐮 𝑡  =

 
 
 
 
 
 
 
 

𝑥2

−𝑥 𝑔 −  𝑥7𝑥2 + 𝑥4𝑥3 𝑚 

𝑥2 − 𝑥5 𝑥2 𝑥3 𝑥3 
𝑥8−1 − 𝑥6𝑥2 𝑥3 

𝑥8

0
0
0
0
0  

 
 
 
 
 
 
 

 (5.4) 

And the output measurement of absolute acceleration is given as 

 𝑦 = 𝑥 + 𝑥 𝑔 + 𝑣 = − 𝑐𝑥 + 𝛼𝑧 𝑚 + 𝑣 = − 𝑥7𝑥2 + 𝑥4𝑥3 𝑚 + 𝑣 (5.5) 

5.1.1 Application of EKF and UKF 

To investigate the performance of EKF and UKF, two subcases are studied. In the first 

case, both the mass 𝑚 and the Bouc-Wen model parameter 𝑛 are assumed to be known. 

For the second case, the parameter 𝑛 is considered as unknown, which renders the cor-

responding model updating problem more difficult due to the fact that 𝑛 appears as a 

highly nonlinear term in the equation (5.2).   

 Subcase I --- 𝑛 is known 

In this subcase, both 𝑚 and 𝑛 are assumed to be known and hence set as the true val-

ues. The initial value for the state variables in the EKF and UKF are given as 

 
𝐱0 =  𝑥1

0 𝑥2
0 𝑥3

0 𝑥4
0 𝑥5

0 𝑥6
0 𝑥7

0 T            

=  0 0 0 10 1 1 0 T  
(5.6) 

To consider the performance of EKF and UKF under noise, white noise processes 

with four different noise intensity levels are added to both the earthquake input and 

absolute acceleration measurements, corresponding to 1%, 5%, 10%, and 20% RMS 

noise-to-signal ratios, respectively. Selected representative results are shown here. 

Figure 5.2 shows the estimated states for the beginning of the earthquake input where 

the parameter updating process starts, and the end of the input where the estimation 

process has converged to the stable values. Even with a high noise level (20%), the 
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state estimation results for displacement and velocity are very accurate. The output 

(absolute acceleration) estimate is also plotted in figure 2, which can be used to eva-

luate the overall estimation accuracy. Figure 5.3 shows the hysteresis loops estimated 

by the EKF and UKF under medium (5%) and high (20%) noise levels.  

 

(a) 

 

(b) 

Figure 5.2 Subcase I: State estimation under 20% noise level  

(a: beginning of updating, b: end of updating) 
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(a) 

 

(b) 

Figure 5.3 Subcase I: Estimated hysteresis loops during the updating 

(a: 5% noise level, b: 20% noise level) 
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result demonstrates that, in this subcase, the EKF and UKF have similar accuracy in 

terms of estimating the state random characteristics. For this subcase, with even high-

er noise level (40% by RMS), the UKF and EKF can still achieve satisfactory esti-

mates. This result also implies that the linearization strategy used by the EKF is also 

accurate under this particular problem setting. 

 

(a) 

Figure 5.4 Subcase I: Parameter updating results 

(a: 5% noise level, b: 20% noise level) (cont.) 
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(b) 

Figure 5.4 Subcase I: Parameter updating results 

(a: 5% noise level, b: 20% noise level) 
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Table 5.1 Estimation results for all noise levels (Subcase I)  

Noise level Identification method 𝜶 𝜷 𝜸 𝒄 

 True Value 15 4 2 0.134 

 Initial Value 10 1 1 0 

𝟏% 

EKF 
estimate 14.99 3.93 2.36 0.128 

error % 0.10 1.84 18.19 4.27 

UKF 
estimate 14.99 3.93 2.36 0.128 

error % 0.10 1.87 18.23 4.23 

       

𝟓% 

EKF 
estimate 14.99 3.85 2.39 0.130 

error % 0.09 3.69 19.7 3.14 

UKF 
estimate 14.99 3.87 2.42 0.129 

error % 0.05 3.32 21.1 3.45 

       

𝟏𝟎% 

EKF 
estimate 14.97 3.79 2.30 0.129 

error % 0.23 5.25 14.83 3.92 

UKF 
estimate 14.97 3.80 2.31 0.128 

error % 0.19 4.90 15.65 4.18 

       

𝟐𝟎% 

EKF 
estimate 14.95 3.66 2.38 0.132 

error % 0.32 8.62 18.82 1.18 

UKF 
estimate 14.95 3.68 2.36 0.132 

error % 0.32 8.12 18.18 1.42 

       

 

 Subcase II --- 𝑛 is unknown 

The situation in this subcase is the same as in subcase I except 𝑛 is unknown. As ex-

plained before, this subcase tends to be highly nonlinear compared to the previous 

case. The initial value for the state variables in the EKF and UKF are given as 

 
𝐱0 =  𝑥1

0 𝑥2
0 𝑥3

0 𝑥4
0 𝑥5

0 𝑥6
0 𝑥7

0 𝑥8
0 T   

=  0 0 0 10 1 1 0 1 T  
(5.7) 

As in subcase I, four different noise intensity levels are considered (1%, 5%, 10%, 

and 20%  RMS noise-to-signal ratio). The results corresponding to subcase I are 

shown here for comparison purposes. 
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(a) 

 

(b) 

Figure 5.5 Subcase II: State estimation under 20% noise level  

(a: beginning of updating, b: end of updating) 
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(a) 

 

(b) 

Figure 5.6 Subcase II: Estimated hysteresis loops during the updating 

(a: 5% noise level, b: 20% noise level) 

Comparing Figure 5.2 and Figure 5.5, the state estimation in subcase II is clearly not 
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(a) 

Figure 5.7 Subcase II: Parameter updating results 

(a: 5% noise level, b: 20% noise level) (cont.) 
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(b) 

Figure 5.7 Subcase II: Parameter updating results 

(a: 5% noise level, b: 20% noise level) 
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Table 5.2 Estimation results for all noise levels (Subcase II)  

Noise 

level 
Identification method 𝜶 𝜷 𝜸 𝒄 𝒏 

 True Value 15 4 2 0.134 2 

 Initial Value 10 1 1 0 1 

𝟏% 

EKF 
estimate 14.60 10.34 0.36 0.209 6.40 

error % 2.70 158.56 82.21 55.79 219.78 

UKF 
estimate 14.99 3.15 1.66 0.113 1.81 

error % 0.07 21.16 16.97 15.55 9.68 

        

𝟓% 

EKF 
estimate 14.54 11.04 5.39 0.226 22.99 

error % 3.07 176.00 169.70 68.56 1049.35 

UKF 
estimate 14.79 2.94 1.44 0.120 1.79 

error % 1.41 26.42 27.76 10.13 10.63 

        

𝟏𝟎% 

EKF 
estimate 14.60 4.66 5.36 0.223 9.68 

error % 2.68 16.49 167.85 66.75 384.12 

UKF 
estimate 14.59 3.04 1.52 0.127 1.85 

error % 2.75 24.11 24.00 4.95 7.61 

        

𝟐𝟎% 

EKF 
estimate 15.12 1.00 0.23 0.054 0.84 

error % 0.83 75.06 88.51 59.66 57.84 

UKF 
estimate 13.59 3.01 0.58 0.155 1.97 

error % 9.37 24.66 71.12 15.98 1.74 

        

 

Examining the parameter estimation results in Table 5.2, it is obvious that the EKF 

cannot identify the parameter 𝑛 under any of the noise levels. A direct consequence is 

that the state estimation resulting from the EKF also has a large error. The UKF, on 

the contrary, outperforms the EKF under each noise level. Although the general trend 

of the identification error is growing as the noise level increases (see Table 5.2), de-

cent parameter estimation result can still be achieved under relatively high (10% 

RMS) level of noise for the UKF. The corresponding overall state estimation is still 

accurate in a reasonable degree (see Figure 5.5 and Figure 5.6).  

Subcase II shows that the UKF provides more accurate estimation than the EKF in 

highly nonlinear system, and is relatively robust to the noise. These findings are con-

sistent with the conclusions in (Wu & Smyth, 2007). 
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5.1.2 Application of HG filter 

Detailed information about the HG filter is described in section 2.3.4. This section de-

monstrates the ability of HG observer to provide state estimation with unknown initial 

conditions of the state variables. All parameters for the Bouc-Wen model are the same as 

the EKF and UKF case. The state vector in this case is given as 

  𝐱 =  𝑥1 𝑥2 𝑥3 T =  𝑥 𝑥 𝑧𝛼  
T  (5.8) 

where 𝑧𝛼 = −𝛼𝑧 𝑚  is a normalized version of  the original Bouc-Wen model, the pur-

pose is to meet the HG filter setting described in section 2.3.4. Therefore, the correspond-

ing Bouc-Wen equation (5.2) changes to 

 𝑧𝛼 = −
𝛼

𝑚
𝑥 −

𝛽𝑚

𝛼
 𝑥  𝑧𝛼  𝑧𝛼  

𝑛−1 +
𝛾𝑚

𝛼
𝑥  𝑧𝛼  

𝑛  (5.9) 

And the gain matrix 𝐊 λ −𝟏 in equation (2.104) can be solved as 

 𝐊 λ −𝟏 =  
3λ 3λ2 λ3

3λ2 5λ3 2λ4

λ3 2λ4 λ5

  (5.10) 

where λ = 2  in this study. The exact initial condition is set as 

𝐱𝟎 =  0.22 1.96 22.00 T  which is equal to one times the standard deviation of the 

corresponding state response, and the assumed initial condition for the observer is 

 0 0 0 T . The input in this case uses a broad-band white noise with power 30 and cor-

relation time 10
-2

 s to generalize the problem. To consider the noise effect, Gaussian ran-

dom processes with three different noise intensity levels (1%, 5% and 20% RMS noise-

to-signal) are added to both input and measurement processes. The simulation in this case 

runs for a duration of 10 s.  

The updating results for 1% and 20% noise levels are shown in Figure 5.8. With the giv-

en initial condition errors, the updated states under both noise levels can quickly track the 

original states, including the Bouc-Wen variable 𝑧𝛼 . However, the higher noise level ap-

parently introduces more deviations during the updating process. 
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(a) 

Figure 5.8 HG states updating results 

(a: 1% noise level, b: 20% noise level) (cont.) 
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(b) 

Figure 5.8 HG states updating results 

(a: 1% noise level, b: 20% noise level) 

The normalized errors of the state estimates  𝐱 − 𝐱 𝐦𝐚𝐱  𝐱    under three different 

noise levels are plotted in Figure 5.9. The ideal “zero noise” case is also plotted in the 

same figure for comparison purposes. The error caused by initial conditions can be readi-

ly recognized from Figure 5.9, and the HG observer can quickly “damped” it out (expo-

nentially fast) when no noise is present or when the noise level is low (1%). With me-
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However, when the noise intensity increases to a high level (20%), the HG observer per-

formance is impaired. Thus, this observer may be applied to update the states of certain 

nonlinear systems with a specific analytical structure. One should be cautious of what 

level of noise the designed HG filter can handle.  

 

Figure 5.9 Comparison of HG normalized updating errors under different noise levels 
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5.2 Updating of The Phenomenological MR Damper Model 

Due to the promise of MR dampers for seismic protection, the analytical modeling of MR 

dampers is an active research topic. Currently, several MR damper models are being in-

vestigated by the research community, including the hyperbolic tangent model (Gavin, 

2001), Bouc-Wen phenomenological model (Spencer Jr., Dyke, Sain, & Carlson, 1997), 

and nonparametric algebraic model (Choi, Lee, & Park, 2001);(Song, Ahmadian, & 

Southward, 2005); (Ruangrassamee, Srisamai, & Lukkunaprasit, 2006), and the Viscous 

plus Dahl model (Rodriguez, Iwata, Ikhouane, & Rodellar, 2009). The Bouc-Wen phe-

nomenological MR damper model considered in this numerical study was proposed by 

(Spencer Jr., Dyke, Sain, & Carlson, 1997). This model was developed by incorporating 

several mechanical components together with a Bouc-Wen unit. The details of this model 

is elaborated in section 6.3.1 for further experimental study. The expression of the phe-

nomenological MR damper model is given as 

 𝑦 =
1

 𝑐0 + 𝑐1 
 𝛼𝑧 + 𝑐0𝑥 + 𝑘0 𝑥 − 𝑦   (5.11) 

and the Bouc-Wen equation 

 𝑧 =  𝑥 − 𝑦  − 𝛽 𝑥 − 𝑦  𝑧 𝑧 𝑛−1 − 𝛾 𝑥 − 𝑦   𝑧 𝑛  (5.12) 

The output damping force is given as 

 𝑓 = 𝑐1𝑦 + 𝑓0 (5.13) 

The corresponding state vector augmented with parameters is defined as 

 
𝐱 =  𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 T   

=  𝑦 𝑧 𝛼 𝛽 𝛾 𝑐0 𝑐1 𝑘0 𝑓0 
T  

(5.14) 

The parameters chosen to simulate the underlying damper are 𝛼 = 2 × 104  N/m, 

𝛽 = 5 × 103  m
-2

, 𝛾 = 3 × 103  m
-2

, 𝑐0 = 20  Ns/m, 𝑐1 = 100  Ns/m, 𝑘0 = 30 N/m, 

𝑓0 = 20 N. As for the initial values of the UKF, the following vector is used 
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 𝐱𝟎 =  0 0 104 104 104 10 10 10 10 T  (5.15) 

The formulation of this model is more complex than the original Bouc-Wen model, and 

contains more parameters. To simulate the dynamic response of this MR damper model, a 

band-limited white noise with correlation time equal to the sampling period, bandwidth 5 

Hz and variance 16 m
2
 is chosen as input. The entire simulation is executed with fixed 

sampling frequency at 2048 Hz for 30 s. Three noise levels with RMS noise-to-signal ra-

tio at 1%, 2% and 5% are examined. The state estimation and parameter updating results 

are shown below. The cases with higher noise intensity (10% and 20%) induced large 

error in the updating process. The corresponding results are not included herein. 

In Figure 5.10, Figure 5.11, and Figure 5.12, the “UKF” curve is obtained by simulating 

the Bouc-Wen model using the updated parameters, and the “converge” curve is obtained 

by simulating the Bouc-Wen model using the entire parameters converging history of the 

UKF updating procedure. As indicated in these figures, when the noise is at a low level (1% 

RMS), the “UKF” curves show that the updated model can reproduce the response of the 

underlying true model by matching both the state responses and the force output.  For the 

“converging” curve, at the beginning of the updating process, it still has apparent discre-

pancies with the true response, but at the end of the updating process, its response has 

already converged to the UKF curve. Therefore, the “converging” curve actually shows 

how the updating process goes from the initial guess and finally approaches to the true 

model. The performance of the updating technique is measured by the relative error 

 𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 − 𝐭𝐫𝐮𝐞 𝐦𝐚𝐱  𝐭𝐫𝐮𝐞    of obtained damping force. The (Euclidean) norm of 

this error under various noise levels is summarized in Table 5.3. It is clear that the rela-

tive error increases as the noise level increases. 

Table 5.3 Damping force error for all noise levels 

Error Norm 𝟏% noise 𝟐% noise 𝟓% noise 

UKF 0.46 1.13 2.72 

Converge 4.13 4.57 6.65 

However, when the noise level is elevated to 5% RMS, Figure 5.10 (b) shows that, even 

towards the end of the UKF updating process, the updated results of the state responses 
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still cannot match the true state responses as well as the lower noise level case does. Fig-

ure 5.11(b) and Figure 5.12 (b) shows the damping force generated in this case also has 

noticable errors. 

The updating history of all the parameters under all noise levels are shown in Figure 5.13, 

and the relative estimated error of each parameter  𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 − 𝐭𝐫𝐮𝐞 𝐭𝐫𝐮𝐞  is sum-

mrized in Table 5.4. For certain parameters (𝜷 and 𝒌),The noise RMS level has signifi-

cant impact on the estimation error. 

Table 5.4 Parameter estimation results for all noise levels 

Noise level  
𝜶 

× 𝟏𝟎𝟑N/m 

𝜷 

× 𝟏𝟎𝟑m
-2

 

𝜸 

× 𝟏𝟎𝟑m
-2

 

𝒄𝟎 

Ns/m 

𝒄𝟏 

Ns/m 

𝒌 

N/m 

𝒇𝟎 

N 

 True Value 20  5 3  20  100  30 20 

 Initial Value 10 10  10 10 10 10 10 

         

𝟏% 
estimate 19.66 4.82 2.99 20.29 101.05 29.94 20.20 

error % 1.70 3.58 0.21 1.45 1.05 0.19 1.02 

          

𝟐% estimate 20.78 6.23 2.67 20.65 103.59 23.77 20.18 

error % 3.89 24.68 10.86 3.23 3.59 20.76 0.88 

          

𝟓% 
estimate 23.56 8.12 3.94 21.68 105.26 16.22 20.38 

error % 17.81 62.44 31.45 8.38 5.26 45.93 1.90 
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(a) upper one 5-7 s; lower one 28-30 s 

Figure 5.10 MR damper states updating results 

(a: 1% noise level, b: 5% noise level) (cont.) 

5 5.5 6 6.5 7
-0.5

0

0.5

time(s)

y
 

 

simulated

UKF

Converge

5 5.5 6 6.5 7
-0.02

0

0.02

time(s)

z

28 28.5 29 29.5 30
-0.5

0

0.5

time(s)

y

 

 

simulated

UKF

Converge

28 28.5 29 29.5 30
-0.02

0

0.02

time(s)

z



148 

 

 

(b) upper one 5-7 s; lower one 28-30 s 

Figure 5.10 MR damper states updating results 

(a: 1% noise level, b: 5% noise level) 
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(a) upper one 5-7 s; lower one 28-30 s 

Figure 5.11 MR damper force vs. displacement 

(a: 1% noise level, b: 5% noise level) (cont.) 
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(b) upper one 5-7 s; lower one 28-30 s 

Figure 5.11 MR damper force vs. displacement 

(a: 1% noise level, b: 5% noise level) 
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(a) upper one 5-7 s; lower one 28-30 s 

Figure 5.12 MR damper force vs. velocity 

(a: 1% noise level, b: 5% noise level) (cont.) 
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(b) upper one 5-7 s; lower one 28-30 s 

Figure 5.12 MR damper force vs. velocity 

(a: 1% noise level, b: 5% noise level) 
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(a) 

Figure 5.13 MR damper model parameters updating history 

(a: 1% noise level, b: 5% noise level) (cont.) 
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(b) 

Figure 5.13 MR damper model parameters updating history 

(a: 1% noise level, b: 5% noise level) 
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5.3 Updating of The Nonlinear Building Model 

The nonlinear building model considered in this section is the modified hysteretic model 

expressed in equation (2.128). As described in section 2.3.5, this model can capture cer-

tain damaging behavior stated in section 2.2.4, such as degradation of unload-

ing/reloading stiffness and strength. The difference between updating this model and the 

nonlinear FE model updating presented in section 2.2.4 is that, the goal of updating is no 

longer achieved by identifying the reduction of instantaneous stiffness, but rather focus-

ing on the entire hysteretic behavior that the structure exhibits during the damaging event. 

Denote the building displacement as 𝑥 𝑡 , the expression of the nonlinear building model 

is given as 

 𝑚𝑥  𝑡 + 𝑐𝑥  𝑡 + 𝑘𝑥 𝑡 + 𝛼𝑧 𝑡 = −𝑚𝑥 𝑔 𝑡  (5.16) 

and the modified Bouc-Wen equation is given in equation (2.128) and restated here 

 𝑧 =
𝑥 − 𝜈𝛽 ⋅ 𝛽 𝑥  𝑧 𝑧 

𝑛−1 − 𝜈𝛾 ⋅ 𝛾𝑥  𝑧 
𝑛

휂
 (5.17) 

where the coefficients 휂, 𝜈𝛽  and 𝜈𝛾  are defined by equations (2.122), (2.129), and (2.130), 

repectively. The output of the model is the absolute floor acceleration given as 

 𝑦 = 𝑥 + 𝑥 𝑔 = − 𝑐𝑥 + 𝑘𝑥 + 𝛼𝑧 𝑚  (5.18) 

The corresponding state vector augmented with parameters is defined as 

 

𝐱

=  𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 T  

=  𝑥 𝑥 𝑧 휀 𝛼 𝛽 𝛾 𝑐 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  
T
 

(5.19) 

Mass is considered as a known variable with its value set as 100 kg in this simulation. 

The parameters chosen to simulate the building model are 𝛼 = 2 × 103 N/m, 𝛽 = 3 m
-2

, 
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𝛾 = 0.5 m
-2

, 𝑐 = 20 Ns/m, 𝑘 = 102  N/m, 𝑛 = 2, 𝛿휂 = 0.2, 𝛿𝛽 = 0.8, and 𝛿𝛾 = 0.5. As 

for the initial values of the UKF, the following vector is used 

 𝐱𝟎 =  0 0 0 0 103 5 2 102 50 3 0.5 1.5 1 
T  (5.20) 

The numerical simulation is performed with sampling frequency at 1024 Hz for 60 

seconds. The input acceleration record is chosen as a band-limited white noise with corre-

lation time equal to the sampling period, bandwidth of 5 Hz and peak acceleration of 3g. 

Three noise levels with RMS noise-to-signal ratio at 1%, 10% and 20% are examined. 

The estimation history of the state responses and parameters during the updating process 

are shown below. 

At low noise level (1% RMS), Figure 5.14 and Figure 5.16 show that, although there are 

apparent discrepancies between the simulated true responses and the UKF updating re-

sults at the beginning of the updating, as the updating procedure propagates in time, the 

UKF can accurately capture the state responses as well as the acceleration output of the 

building model by the end of the updating. The “converge” curve also converges to the 

UKF curve towards the end of the updating as expected. However, considering the nega-

tive influence of the high level of noise (20% RMS), Figure 5.15 and Figure 5.17 show 

that, even by the end of the 60 s UKF updating, the UKF updating results and the under-

lying true behavior still have noticeable discrepancies. The performance of the updating 

technique is measured by the relative error  𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 − 𝐭𝐫𝐮𝐞 𝐦𝐚𝐱  𝐭𝐫𝐮𝐞    of ob-

tained acceleration output. The (Euclidean) norm of this error under various noise levels 

is summarized in Table 5.5. As the noise level increases, the error norm increases as well. 

Table 5.5 Acceleration error for all noise levels 

Error Norm 𝟏% noise 𝟏𝟎% noise 𝟐𝟎% noise 

UKF 2.58 3.17 4.25 

Converge 5.23 6.04 7.21 

The updating history of all the parameters under all noise levels are shown in Figure 5.18, 

and the relative estimated error of each parameter  𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞 − 𝐭𝐫𝐮𝐞 𝐭𝐫𝐮𝐞  is summa-

rized in Table 5.6. Parameters 𝜷, 𝜸, and their corresponding modifying coefficients (𝜹𝜷 
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and 𝜹𝜸) have larger identification errors than others. Comparing these to the results in 

Table 5.5, the noise RMS level has more significant impact on the parameter estimation 

than the output acceleration estimation. 

Table 5.6 Parameter estimation results for all noise levels 

Nois

e 

level 

 

𝜶 

𝟏𝟎𝟑 

N/m 

𝜷 

m
-2

 

𝜸 

m
-2

 

𝒄 

𝟏𝟎𝟐 

Ns/m 

k 

𝟏𝟎𝟐 

N/m 

𝒏 𝜹𝜼 𝜹𝜷 𝜹𝜸 

 
True  

Value 
2 3 0.5 0.2 1 2 0.2 0.8 0.5 

 
Initial 

Value 
1 5 2 1 0.5 3 0.5 1.5 1 

           

𝟏% 
estimate 1.97 3.16 0.51 0.20 1.00 2.02 0.20 0.76 0.50 

error % 1.28 5.23 1.67 2.22 0.16 1.17 1.27 4.42 0.44 

           

𝟏𝟎% estimate 2.08 3.72 0.29 0.19 0.98 2.17 0.22 0.97 0.93 

error % 4.06 23.89 42.35 6.36 1.92 8.57 12.28 21.04 85.63 

           

𝟐𝟎% 
estimate 2.16 4.28 0.93 0.21 0.99 2.28 0.25 1.06 0.97 

error % 8.16 42.51 85.39 3.24 0.64 14.02 24.76 32.62 93.61 

           

To further inspect the influence by parameter estimation error on the behavior of the  

nonlinear building model, a cyclic input with increasing amplitude (see Figure 5.19) is 

applied. In the obtained responses shown in Figure 5.20, the force-displacement curves 

obtained from the UKF updated model under different levels of noises are compared with 

the ones obtained from the model with initial vlaue. The RMS values of the error are 

summarized in Table 5.7. Clearly the error also increases with the noise level, but the ac-

curacy of the updated models has a significant improvement over the initial model. 

Table 5.7 Force error for all noise levels 

Error RMS 𝟏% noise 𝟏𝟎% noise 𝟐𝟎% noise 

Id 7.58 14.05 24.00 

Initial 315.05 315.05 315.05 
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(a) 

Figure 5.14 Building model states updating results with 1% noise 

(a: beginning of updating 5-10 s; b: end of updating 55-60 s) (cont.) 
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(b) 

Figure 5.14 Building model states updating results with 1% noise 

(a: beginning of updating 5-10 s; b: end of updating 55-60 s) 
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(a) 

Figure 5.15 Building model states updating results with 20% noise 

(a: beginning of updating 5-10 s; b: end of updating 55-60 s) (cont.) 
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(b) 

Figure 5.15 Building model states updating results with 20% noise 

(a: beginning of updating 5-10 s; b: end of updating 55-60 s) 
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(a) 

 

(b) 

Figure 5.16 Building model acceleration output updating results with 1% noise 

(a: beginning of updating 5-10 s; b: end of updating 55-60 s) 
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(a) 

 

(b) 

Figure 5.17 Building model acceleration output updating results with 20% noise 

(a: beginning of updating 5-10 s; b: end of updating 55-60 s) 
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(a) 

Figure 5.18 Building model parameters updating history 

(a: 1% noise level, b: 20% noise level) (cont.) 
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(b) 

Figure 5.18 Building model parameters updating history 

(a: 1% noise level, b: 20% noise level) 
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Figure 5.19 Cyclic displace input with increasing peak 

 

 

(a) 

Figure 5.20 Force vs. displacement under cyclic displacement input 

(a: 1% noise level; b: 10% noise level; b: 20% noise level) (cont.) 

0 5000 10000 15000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time (s)

D
is

p
 (

m
)

-2 -1 0 1 2
-1000

-500

0

500

1000

1500
Force vs. disp with rms errors = 7.580896      315.0538

Displacement

F
o
rc

e

 

 

sim

id

ini



167 

 

 

 

(b) 

 

(c) 

Figure 5.20 Force vs. displacement under cyclic displacement input 

(a: 1% noise level; b: 10% noise level; b: 20% noise level) 
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5.4 Summary 

This chapter demonstrates the nonlinear real-time updating technique with several numer-

ical studies using nonlinear models. In the updating of the original Bouc-Wen model, the 

UKF shows superior performance to the EKF in terms of updating highly nonlinear prob-

lems. In the two following problems, the updating of the phenomenological MR damper 

and the nonlinear building model, only the UKF is chosen as the updating tool. 

The results of updating of MR damper and nonlinear building model demonstrates that 

the UKF can accurately capture the behavior of the nonlinear models under low noise 

level, and can update the model with real-time identified model parameters. It is however 

also shown that, the noise levels have a direct impact on the performance of the UKF up-

dating strategy, especially for the updating of model parameters. With 20% RMS noise, 

some of the parameters can have an estimation error of more than 50%. This fact pro-

motes the use of filtering technique described in section 2.4.3, so that the noise level is 

kept within the applicable range of the UKF.  
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CHAPTER 6 

EXPERIMENTAL STUDY OF 

 MR DAMPER MODEL UPDATING 

This chapter and the next chapter --- CHAPTER 7 present the experimental study on the 

real-time model updating. This is the first time such nonlinear model updating experi-

ments have been conducted in hard real-time. Previously, the UKF has been applied in 

numerical studies (Wu & Smyth, 2007); (Wu & Smyth, 2008); (Chatzi & Smyth, 2008) 

and off-line simulation using experimental data (Chatz, Smyth, & Masri, 2010). Its real-

time capability has not been actually explored. This chapter presents the experimental 

results on the real-time updating of the MR damper model. The related numerical simula-

tion is reported in section 5.2 with the UKF is chosen as the updating methods. In this 

chapter, the UKF is again chosen as the real-time updating scheme. The experimental 

study presented herein not only aims at updating the nonlinear models so that the beha-

vior of the tested MR damper can be reproduced, but also providing such updating results 

in real-time. 

6.1 Purpose and Procedure of Updating MR Damper Models 

The output of the MR damper is the damping force generated from the device, and the 

input is the motion applied on the damper movable piston and the current that controls 

the strength of the magnetic field of the MR fluid. The ultimate goal of updating the MR 

damper model is to provide a model which can capture the damper‟s behavior under a 

variety of displacement inputs and electric current inputs, preferably random displace-

ment inputs and random current (or driven voltage) within certain frequency bandwidth. 
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The real-time feature of the updating strategy can also be utilized so that a “fast” model 

estimation result can be available. The updating algorithm can be used as a state observer 

to provide feedback to possible structural control applications. 

The experimental plan to realize the ultimate goal includes the following steps: 

1. Sinusoidal displacement inputs with constant voltage (current) 

Under constant voltage, the resulting current in the circuit is also constant. In this case, 

6 constant voltage levels are chosen. The amplitudes of the controlled sinusoidal dis-

placement inputs are 0.3 in, 0.4 in, and 0.5 in, and the frequencies are 2 Hz, 3 Hz, 4 

Hz and 5 Hz. With 60 sec displacement input, the experimental data and updating re-

sults are both recorded. In this case, the UKF updating strategy is executed simulta-

neously with the experiment in real-time. An off-line optimization algorithm is ap-

plied on the entire 60 sec data and obtain a model used to compare with the real-time 

updated model. 

2. Random displacement inputs with constant voltage (current) 

The test procedure is similar as the previous case, except that the displacement inputs 

are two types of random displacements. One type is with the frequency band ranges 

from 0 to 5 Hz (low-pass), and the other is with the frequency band ranges from 2 to 

5 Hz (band-pass). For each type, the same 6 constant voltage levels are used, and the 

maximum amplitudes are 0.3 in, 0.4 in, and 0.5 in. Again, an off-line optimization al-

gorithm is applied to compare its estimates of the model parameters with the real-time 

UKF updating results. 

3. Random displacement inputs with random voltage (current) 

Prior to this case, with the experimental results obtained from the above cases under 

various constant voltage levels, each updated model parameter can be related to the 

electric current level by a linear curve fit. Therefore, the following MR damper mod-

els including electric current influence can be obtained: 

MDL_rt_sin_cv: MR damper model obtained by UKF real-time updating using sinu-

soidal input; 
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MDL_off_sin_cv: MR damper model obtained by off-line optimization using sinu-

soidal input; 

MDL_rt_random_cv: MR damper model obtained by UKF real-time updating using 

random input; 

MDL_off_random_cv: MR damper model obtained by off-line optimization using 

random input; 

These 4 models obtained from constant current tests will be used in the comparison 

study later. The random voltage (current) test case contains the following subcases 

based on if the power supply is considered in the damping system or not: 

Subcase I - without power supply unit: This subcase does NOT consider the power 

supply unit as part of the damping system. The electronic input to the damping sys-

tem is the measured current in the closed circuit. With the same random displacement 

inputs from the test case 2, together with a random current input (obtained by apply a 

random voltage on the power supply unit), two real-time updated models 

(MDL_rt_current_rv and MDL_rt_current_rv_fix) are obtained with UKF method. 

Subcase II - with power supply unit: This subcase includes the power supply unit as 

part of the damping system. Therefore, the electronic input to the damping system is 

the measured voltage applied to the power supply unit. This model used in this sub-

case is more complicated since the parameters characterizing the power supply com-

ponent are included in the updating procedure as well. Again, with the same random 

displacement inputs and random voltage inputs, two real-time updated models 

(MDL_rt_power_rv and MDL_rt_power_rv_fix) are obtained with UKF method. 

4. Comparison tests: New random displacement inputs with new random voltage 

(current) 

For comparison purposes, a new set of random displacement inputs (both low pass 

and band pass) paired with a new random voltage input are applied to the MR damper 

for 60 s. The experimental results are compared with the ones obtained from the pre-

viously updated models. Based on if the power supply unit is included or not, the 

comparison study is again separated as two subcases: 
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Subcase I - without power supply unit: Corresponding to the subcase I in the previous 

test case.  The damping force obtained from experiments is compared with the ones 

obtained from each of the previously updated models. 

Subcase II - with power supply unit: Corresponding to the subcase II in the previous 

test case.  Both the damping force and current obtained from experiments are com-

pared with the ones obtained from each of the previously updated models. 

This case is to evaluate if the behavior of the MR damper under a random displace-

ment and random voltage can be captured by the updated models. 

6.2 Experimental Setup 

The damper test bed is shown in Figure 6.1. The entire set up is mounted on a 60 in×6 

in×0.5 in steel plate which is bolted to the ground. A Shore Western 2.2 kip Model 910 

series double-ended dynamic actuator with a ± 3in stroke, is installed between the angle 

end-plate and a support fixture. The hydraulic control system is Shore Western SC6000 

Servo Controller. The adjustable bolt-slot feature on the support fixture is used to fine 

tune the actuator alignment with the test specimen. The test specimen is fixed between 

the actuator piston head and the angle plate on the other end. 

 

Figure 6.1 Test bed 

Detailed descriptions of each component in this experiment are given in the following 

sections. 

angle plate with tri-

angular gusset web actuator support 

angle plate actuator  
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6.2.1 MR Damper 

The MR damper used in this study is one of the MR dampers in Intelligent Infrastructure 

Systems Lab (IISL). The tested damper is manufactured by LORD Corporation with the  

model number RD-8041-1. The stroke of the damper is 74 mm (2.91 in), with the fully 

extended length at 248 mm (9.76 in). With 5 cm/sec at 1 Amp current, the minimum typ-

ical damping force can be achieved is 2447 N (550 lbf) peak-to-peak. A photo of the MR 

damper and mounting clevises are shown in Figure 6.2.  

 

Figure 6.2 Damper, load cell and clevises 

A fully functional MR damper has to be provided with a companion power supply. In this 

experiment, a LORD Wonder Box
®
 device is used to provide control to the closed loop 

current to the MR damper. This device can provide both manual and external voltage 

control. For this experiment, only external voltage control is used. With the current MR 

damper connected in the closed loop, a 0-6 Volts DC signal input to the Wonder Box can 

generate a maximum current of 2 Amp (see Figure 6.3). The lower and upper saturation 

levels are at 0.5 Volt and 5 Volt. A photo of the Wonder Box is shown in Figure 6.4. 

MR damper (LORD) 

clevis 

1 inch 

Load cell 
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6.2.2 Force and Current Measurement 

The damping force and closed loop current are two outputs in the MR damper system. In 

this experiment, The damping force is measured by the load cell installed against the an-

gle end-plate. The load cell used in this experiment is a stainless steel “S” beam load cell 

(see Figure 6.2) manufactured by  OMEGA
®
 ENGINEERING, Inc. The model number is 

LC101-2K with capacity up to 909 kgf (2000 lbf). The range of the excitation signal is 10 

VDC (15 VDC max). 

 

Figure 6.3 Tested performance curve of power supply unit 

 

Figure 6.4 LORD Wonder Box
®
 power supply unit 
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The current is measured by a clamp-on current probe manufactured by Tektronix
®

, Inc. 

(See Figure 6.5). This probe can measure AC/DC currents from 50 mA to 100 A peak 

over a frequency range of DC to 100 kHz. 

 

Figure 6.5 Clamp-on current probe by Tektronix
®

 

6.2.3 Real-time Testing Equipements 

As described in section 2.4.2, the xPC Target™ is selected as the real-time simulator in 

this experimental study. The compatible I/O device selected is the “NI PCI 6251”, a high-

speed multifunction M Series data acquisition (DAQ) board from NATIONAL IN-

STRUMENTS™. Some of its technical specifications are listed in section 2.4.2 as well. 

Figure 6.6 shows the picture of NI PCI 6251. The attached BNC connector block BNC-

2120 is shown in Figure 6.7. 

 

Figure 6.6 DAQ board PCI 6251 by NATIONAL INSTRUMENTS™ 
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The computer platform for the xPC Target environment is a desktop PC with 3GHz CPU 

(Intel Pentium 4) and 1GB memory. The communication between the host PC and the 

xPC Target is via Ethernet connection. 

This real-time testing environment is used in both experimental studies in CHAPTER 6 

and CHAPTER 7. For the MR damper test, a schematic of the equipment connection and 

signal flow is shown in Figure 6.8. Compared with Figure 2.19, it is clear that this set up 

fits the rapid prototyping framework. 

 

Figure 6.7 Shielded connector block BNC-2120 by NATIONAL INSTRUMENTS™ 

 

Figure 6.8 Schematic of MR damper test 
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6.3 MR Damper System Modeling 

The tested MR damper can harness the behavior of the magneto-rheological (MR) fluid, a 

type of controllable fluid with the ability to reversibly change from a free-flowing, linear, 

viscous fluid to a semi-solid in milliseconds when exposed to a magnetic field (Dyke, 

1996). As mentioned in section 6.2.1, in the case of the MR damper tested in this experi-

mental study, it can generate high damping force [2447 N (550 lbf) peak-to-peak] with 

relatively low power requirement (approx. 1 Amp for building up the required magnetic 

field). Continuously variable damping is controlled by the change in the behavior of the 

MR fluid in response to the change of magnetic field strength. 

 

(a)      (b) 

Figure 6.9 Schematic (a) and actual picture (b) of tested MR damper 

However, the behavior of this damping device is highly nonlinear. An accurate model of 

this device is an essential tool to exploit the damping feature of the device. The tested 

damper is a monotube MR fluid-based damper (shown in Figure 6.9) has been commer-

cialized for use in industrial suspension applications, such as suspension system for large 

vehicles. This MR damper consists of a fixed orifice damper filled with a magneto-
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rheological fluid as shown in Figure 6.9 (a). The stroke of the damper is 74 mm (2.91 in), 

with the fully extended length at 248 mm (9.76 in). The main cylinder is 41.3 mm (1.625 

in) in diameter. The main cylinder houses the piston, the magnetic circuit, an accumulator 

and MR fluid. The MR fluid is a proprietary formulation developed by the Lord Corpora-

tion, which has a very low plastic viscosity, and the particle separation and settling do not 

present a problem. The additives in the fluid are very effective at preventing caking or 

particle sedimentation. Also noticed that, the monotube chamber has an accumulator con-

taining high-pressure nitrogen gas (300 psi). The accumulator serves as an volume com-

pensator due to the change in volume available to the fluid caused by: i) the piston rod 

enters the monotube; and ii) thermal expansion of the MR fluid. 

6.3.1 Modeling of MR Damper Behavior 

There are several models available for describing the damping force of MR damper as a 

function of the motion (displacement and velocity) of the damper piston and the current 

in the closed circuit of the damping system. Five models for MR dampers are briefly re-

viewed herein (Spencer Jr., Dyke, Sain, & Carlson, 1997);(Jiang & Christenson, 2011). 

 Simple Bouc-Wen Model 

 

Figure 6.10 Schematic of simple Bouc-Wen MR damper model 
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This model is introduced by (Spencer Jr., Dyke, Sain, & Carlson, 1997), as a compo-

sition of a Bouc-Wen nonlinear element together with a spring and a dashpot (shown 

in Figure 6.10). 

The damping force generated in the system is given as 

  (6.1)

where  satisfies the normalized Bouc-Wen equation [original paper (Spencer Jr., 

Dyke, Sain, & Carlson, 1997) used Bouc-Wen equation (2.109)] 

 | | | | | |  (6.2)

This model has a simple form with 6 parameters ( , , , , , ) and 1 state vari-

able ( ). 

 Phenomenological Bouc-Wen Model 

 

Figure 6.11 Schematic of phenomenological MR damper model 

The phenomenological MR damper model is proposed from (Spencer Jr., Dyke, Sain, 

& Carlson, 1997) as well. In this Bouc–Wen model (shown in Figure 6.11), the ac-

cumulator stiffness is represented by  and the viscous damping observed at larger 

velocities is represented by . A dashpot, represented by , is included in the model 
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to produce the force roll-off at low velocities.  is present to control the stiffness, 

and  is the initial damper force due to the accumulator. 

According to Figure 6.11, the forces on either side of the rigid bar are equivalent, 

therefore the following equation can be derived 

 
1

 (6.3)

and the Bouc-Wen equation 

 | | | | | |  (6.4)

The output damping force is given as 

  (6.5)

This model has 9 parameters ( , , , , , , , , ) and 2 state variables ( , ). 

The units for the parameters are  (lbf/in),  (in-n),  (in-n), (lbfs/in),  (lbfs/in), 

 (lbf/in),  (lbf/in),  (lbf). 

 Hyperbolic Tangent Model 

 

Figure 6.12 Schematic of hyperbolic tangent MR damper model 

The hyperbolic tangent model was proposed by (Gavin, 2001). The hyperbolic tan-

gent model is composed of two sets of spring-dashpot elements that are connected by 
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a mass element (Bass & Christenson, 2007). As shown in Figure 6.12, the inertial 

mass element 𝑚0 is connected with a Coulomb friction element, which provides the 

friction force 𝑓𝑐 𝑥 0 = 𝑓0 tanh 𝑥 0 𝑉ref   . The parameter 𝑓0 is the yield force and 𝑉ref 

is a reference velocity, which affects the shape of the transition from the elastic to 

plastic region of the function. The preyield visco-elastic behavior is modeled by 𝑘1 

and 𝑐1. The post-yield visco-elastic behavior is modeled by 𝑘0 and 𝑐0.  

The dynamics of the system and force output can be described in state space form by 

the following equation of motion 

 

 
𝑥 0
𝑥 0
 =  

0 1

−
 𝑘0 + 𝑘1 

𝑚0
−
 𝑐0 + 𝑐1 

𝑚0

  
𝑥0

𝑥 0
 +  

0 1
𝑘1

𝑚0

𝑐1

𝑚0

  
𝑥
𝑥 
 

+  

0

−
1

𝑚0

 𝑓𝑐 𝑥 0  

(6.6) 

and the damping force 𝑓 is given as 

 𝑓 =  −𝑘1 −𝑐1  
𝑥0

𝑥 0
 +  𝑘1 𝑐1  

𝑥
𝑥 
  (6.7) 

This model has 7 parameters (𝑐0, 𝑐1, 𝑘0, 𝑘1, 𝑚0, 𝑓0, 𝑉ref) and 2 state variables (𝑥0, 𝑥 0). 

 Viscous + Dahl model 

The Dahl model introduced by (Dahl, 1968) was developed for the purpose of simu-

lating friction in a system. In the damper model developed by (Rodriguez, Iwata, 

Ikhouane, & Rodellar, 2009), it is used as a nonlinear damping element, connected in 

parallel with a dashpot,  as shown in Figure 6.13. 

The output damping force is given as 

 𝑓 = 𝜅𝑥𝑥 + 𝜅𝑤𝑤 (6.8) 

where 𝜅𝑥  is the viscous damping coefficient, 𝜅𝑤  is the Dahl friction coefficient, and 

𝑤 is given by the following Dahl model 
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 | |  (6.9)

This model has 3 parameters ( , , ) and 1 state variables ( ). 

 

Figure 6.13 Schematic of viscous + Dahl MR damper model 

 Algebraic Model 

All the above models are in dynamic system format. An algebraic model technique is 

used by researchers (Choi, Lee, & Park, 2001);(Song, Ahmadian, & Southward, 

2005); (Ruangrassamee, Srisamai, & Lukkunaprasit, 2006) to describe the behavior 

of MR dampers as well. The algebraic model used in (Jiang & Christenson, 2011) 

consists of two components: a polynomial function characterizing the maximum 

damping force and a shape function describing the force-velocity dependency. 

The MR damper force is therefore written as 

 1 e | | | |  (6.10)

where  is the slope and  is the y-intercept parameter. An exponential function, 

with parameter , is appended to the model to capture the force roll-off at low veloci-

ties. This model is fully characterized with these 3 parameters ( , , ). 
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A recent study (Jiang & Christenson, 2011) on the large scale MR dampers shows that, 

the performance of the above MR damper models in characterizing the damping force 

varies from applications to applications. The amplitude, frequency bandwidth and time 

step size can all affect the performance. In this experimental study, the Simple Bouc-Wen 

model and the phenomenological model are considered as the updating objectives since 

they can provide stable performance under many conditions. 

6.3.2 Passivity of MR Damper Model 

As discussed in section 2.3.5 and Appendix F, the passivity of a nonlinear model is an 

important concept that indicates if the model is capable of generating net energy. A 

damping device used in dissipating vibrational energy during extreme loading events 

should be passive only. Here the passivity of  Simple Bouc-Wen Model and Phenomeno-

logical Bouc-Wen Model are discussed. The passivity of these two models can be proved 

by indirectly applying the component analysis of parallel connection and series connec-

tion in Appendix F. Below shows a rather direct proof of the passivity of the two models 

used in this experimental study. 

 Passivity of Simple Bouc-Wen Model 

From equation (6.1), a normalized damping force generated in the system is given as 

 𝑓𝑛 = 𝑓 − 𝑓0 = 𝑐0𝑥 + 𝑘0𝑥 + 𝛼𝑧 (6.11) 

The reason to use 𝑓𝑛  instead of 𝑓 is due to the requirement in Appendix F, that the 

origin is a fixed point of the system. Similar to section 2.3.5, from equation (6.2) and 

the BIBO condition of class I in Table 2.1, the following equation stands 

 𝑧𝑧 = 𝑧𝑥 − 𝛽 𝑥   𝑧 𝑛+1 − 𝛾𝑧𝑥  𝑧 𝑛 ≤ 𝑧𝑥 +   𝛾 − 𝛽  𝑥   𝑧 𝑛+1 ≤ 𝑧𝑥  (6.12) 

and from equation (6.11) 

 𝑧𝑥 = 𝑧𝑢 =
𝑓𝑛 − 𝑐0𝑥 − 𝑘0𝑥

𝛼
𝑢 (6.13) 

using equations (6.12) and (6.13) 
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 𝑓𝑛𝑢 ≥ 𝛼𝑧𝑧 + 𝑘0𝑥𝑥 + 𝑐0𝑥 
2 ≥ 2𝑙1𝑧𝑧 + 2𝑙2𝑥𝑥 = 𝑉  (6.14) 

where 𝑙1 = 𝛼 2 > 0, 𝑙2 = 𝑘0 2 > 0, and the storage function 𝑉 = 𝑙1𝑧
2 + 𝑙2𝑥

2. This 

shows that the simple Bouc-Wen MR damper model is passive with respect to the sto-

rage function 𝑉. 

 Phenomenological Bouc-Wen Model 

From equation (6.5),The normalized damping force is given as 

 𝑓𝑛 = 𝑓 − 𝑓0 = 𝑐1𝑦 + 𝑘1𝑥 (6.15) 

Similar to section 2.3.5, from equation (6.4) and the BIBO condition of class I in Ta-

ble 2.1, the following equation stands 

 
𝑧𝑧 = 𝑧 𝑥 − 𝑦  − 𝛽 𝑥 − 𝑦   𝑧 𝑛+1 − 𝛾𝑧 𝑥 − 𝑦   𝑧 𝑛  

≤ 𝑧 𝑥 − 𝑦  +   𝛾 − 𝛽  𝑥 − 𝑦   𝑧 𝑛+1 ≤ 𝑧 𝑥 − 𝑦   
(6.16) 

Then rewrite equation (6.3) into the following form 

 𝑐1𝑦 = 𝛼𝑧 + 𝑐0 𝑥 − 𝑦  + 𝑘0 𝑥 − 𝑦  (6.17) 

Using equations (6.15), (6.16) and (6.17) 

 

𝑓𝑛𝑢 = 𝑓𝑛𝑥 = 𝑐1𝑥 𝑦 + 𝑘1𝑥𝑥 = 𝑐1 𝑥 − 𝑦  𝑦 + 𝑘1𝑥𝑥 + 𝑐1𝑦 
2 

≥ 𝛼𝑧𝑧 + 𝑘0 𝑥 − 𝑦  𝑥 − 𝑦  + 𝑐0 𝑥 − 𝑦  
2 + 𝑐1𝑦 

2 

≥ 2𝑙1𝑧𝑧 + 2𝑙2 𝑥 − 𝑦  𝑥 − 𝑦  = 𝑉  

(6.18) 

where 𝑙1 = 𝛼 2 > 0 , 𝑙2 = 𝑘0 2 > 0 , and the storage function 𝑉 = 𝑙1𝑧
2 +

𝑙2 𝑥 − 𝑦 2. This shows that the simple Bouc-Wen MR damper model is passive with 

respect to the storage function 𝑉. This concludes the proof of the passivity of the two 

MR damper models. 

6.3.3 Modeling of Power Supply Unit 

The damping behavior of the MR damper depends on the magnetic field across the MR 

fluid, therefore, the parameters in the above MR damper models depends on the current 
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which directly relates to the strength of the magnetic field. For the control signal in the 

form of DC voltage, a model of the power supply unit is desirable when designing the 

controller of the MR damping system to characterize the dependency between voltage 

control signal and resulting closed loop current. 

Based on the design of the tested MR damper [see Figure 6.9(a)], the closed circuit when 

the MR damper is powered consists of the inductance 𝐿 of the electromegnatic coil and 

the electric resistance 𝑅. A RL circuit diagram is shown in Figure 6.14 to demonstrate the 

above composition as an inductor connected in series with a resistor. The relationship be-

tween the output current 𝐼 and the input voltage control signal 𝑈 is given as 

 
𝑑𝐼

𝑑𝑡
= −

𝑅

𝐿
𝐼 +

1

𝐿
𝑈 (6.19) 

 

Figure 6.14 RL circuit diagram 

Equation (6.19) has a simple form and is used in this experimental study as an model up-

dating target, when the power supply unit model is considered as a component of the 

model of the entire MR damping system. 

6.4 Experimental Results 

As described in section 6.1, the entire experimental study consists of 4 major steps: 

1. Sinusoidal displacement inputs with constant voltage (current); 
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2. Random displacement inputs with constant voltage (current); 

3. Random displacement inputs with random voltage (current); 

4. Comparison tests: New random displacement inputs with new random voltage 

(current). 

Among these experiments, the first 2 are performed under constant voltage (current), and 

the last two are performed under varying (random) voltage. The last step is designed as a 

comparison case to demonstrate the performance of updated models by applying a new 

(not used for previous updating) random data set. However, before conducting the above 

major experimental steps, a preliminary test is performed to check the behavior of the 

damper, as well as the potential of the MR damper models (simple Bouc-Wen and phe-

nomenological Bouc-Wen models) in representing the actual damper behavior. 

6.4.1 Preliminary Test 

The preliminary test includes a total amount of 125 tests under a series of sinusoidal dis-

placement inputs combined with various constant voltage (current) inputs (as shown in 

Table 6.1). The purpose is to understand the behavior of the MR damper. It is shown that, 

in low amplitude (0.1 in and 0.2 in), the load-displacement (F-D) and load-velocity (F-V) 

hysteresis loops show certain unmodeled behavior, such as “kinks” in F-D curves and 

“knots” in F-V curves. 

A typical F-D curve with “kink” behavior is shown in Figure 6.15 for a case under 0.1 in, 

1 Hz sinusoidal displacement and 2 V voltage inputs. A typical F-V curve with “knot” 

behavior is shown in Figure 6.16 for a case under 0.1 in, 2 Hz sinusoidal displacement 

and 0 V voltage inputs. For certain cases, both of the “kink” and “knot” behaviors are 

present, such as the case under 0.3 in, 1 Hz sinusoidal displacement and 3 V voltage in-

puts, shown in Figure 6.17 and Figure 6.18. The problematic regions are marked in red 

box in Figure 6.18. To provide a better examination, a zoomed-in view of the F-V curve 

is provided in Figure 6.19 to show the “knot” in the large velocity region. 
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Table 6.1 Behavior indicator of preliminary test 

Amp (in) 0.1 0.2 0.3 

Freq (Hz) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

V
o
lt

ag
e/

C
u
rr

en
t 0V L+ L+ L+ L L L+ L+ L L+ L+ L L - L L 

1V K+,L+ K,L+ K,L - - K,L L L - - L - - - - 

2V K+,L+ K,L+ K,L - - K+,L+ L K - - K - - - - 

3V K+,L+ K,L+ K,L K - K+,L+ K,L+ K - - K,L - - - - 

3.5V K+,L+ K,L+ K,L K,L - K+,L+ K,L+ K - - K,L+ - - - - 

Table 6.1 continued 

Amp (in) 0.4 0.5 

Freq (Hz) 1 2 3 4 5 1 2 3 4 5 

V
o
lt

ag
e/

C
u
rr

en
t 0V L L - - - - L L - L 

1V K,L - - - - - - - - - 

2V K - - - - - - - - - 

3V K,L - - - - - - - - - 

3.5V K,L - - - - - - - - - 

 

“K” indicates “kink” in the load-displacement hysteresis loop; “L” indicates “knot” in the load-velocity hysteresis loop; 

“-” indicates normal behavior.  

1
8
7
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Figure 6.15 Load-displacement curve of case - 0.1in1Hz2Volt 

 

Figure 6.16 Load-velocity curve of case - 0.1in2Hz0Volt 
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Figure 6.17 Load-displacement curve of case - 0.3in1Hz3Volt 

 

 

Figure 6.18 Load-velocity curve of case - 0.3in1Hz3Volt 
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Figure 6.19 Zoomed in view of the load-velocity curve of case - 0.3in1Hz3Volt 

The causes of these unmodeled nonlinear behavior still remains unknown. But they can-

not be represented by any of the available MR damper models described in section 6.3.1. 

Based on these preliminary test results, the later experimental study is restricted to the 

cases with amplitude ranges from 0.3-0.5 in, frequency below 5 Hz and voltage level be-

tween 1.5 V and 2.75 V. 

Another important task is also completed during the preliminary tests --- noise level mea-

surements. The noise level is part of the input to the UKF formulation [see equations 

(2.65) and (2.64)]. The performance of the UKF real-time updating method with the pres-

ence of noise is a measure of its robustness. With the filter implemented in the updating 

procedure (refer to section 2.4.3), the noise in the actuator displacement feedback meas-

ured by internal LVDT (COV-covariance 8×10
-8

 [in]
2
, with the corresponding obtained 

velocity noise level COV 1×10
-4

 [in/s]
2
), the force measured by the load cell (COV 1×10

-

4
 [lbf]

2
) and the current measured by the current probe (COV 1×10

-5
 [Amp]

2
) are all rec-

orded. Only an approximate value is applied since the noise measurement itself is also a 

random variable, which may vary constantly. And it is also of interest to examine the per-
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formance of the UKF when the noise level is only an approximate estimate to its actual 

value. 

6.4.2 Sinusoidal Displacement Constant Voltage (Current) 

In this part of experimental study, the displacement inputs are sinusoidal excitation with 

amplitude 0.3in, 0.4in, and 0.5in, frequency 2Hz, 3Hz, 4Hz, and 5Hz; command voltage 

input 1.5V, 1.75V, 2V, 2.25V, 2.5V and 2.75V, corresponding to (approximately) the 

constant current level 0.45A, 0.55A, 0.65A, 0.75A, 0.85A and 0.95A, respectively. The 

cases in this experimental step are named as xin-yHz-zV, denoting displacement input 

with 0.x in and y Hz, voltage input with z Volts. 

To apply the real-time updating method, a proper damper model has to be selected. The 

goal is to represent the tested MR damper behavior, as well as maintain a manageable 

computational demands for real-time performance. As described in section 6.3.1, two MR 

dampers are implemented with the UKF algorithm, simple Bouc-Wen model and pheno-

menological Bouc-Wen model. Since the simple Bouc-Wen model contains less parame-

ters (𝛼, 𝛽, 𝛾, 𝑐0, 𝑘0, 𝑓0) than phenomenological Bouc-Wen model (𝛼, 𝛽, 𝛾, 𝑐0, 𝑐1, 𝑘0, 𝑘1, 

𝑛, 𝑓0), it is chosen as the first candidate for this sinusoidal test.  

Using the simple Bouc-Wen model, the corresponding state vector augmented with pa-

rameters is defined as 

 
𝐱 =  𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 T

=  𝑧 𝛼 𝛽 𝛾 𝑐0 𝑘0 𝑓0 
T  

(6.20) 

A trial case with 0.4in, 3Hz and 2V inputs is performed. The experiment lasts for 60 s, 

and the UKF updating is executed in real-time on xPC Target PC as part of the experi-

ment. After the experiment is completed, an off-line optimization scheme using con-

strained optimization method (MATHWORKS, 2010) is applied on the recorded data, an 

updated model can also be obtained. Comparing to the real-time updating scheme, it gen-

erally takes much longer time to obtain the off-line model. However, the off-line optimi-

zation usually gives a more accurate model since the error is minimized as the objective 
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function. The initial values for the parameters of both real-time and off-line updating 

model are 

 𝐱𝟎 =  2 × 104 5 × 103 5 × 103 20 100 10 T  (6.21) 

where a further constraint 𝛽 = 𝛾 is imposed to reduce the number of parameters. The 

real-time updating model gives the parameter set as  

 𝐱𝐫𝐭 =  1.65 × 104 6.0 × 103 6.0 × 103 12.98 10.97 29.27 T  (6.22) 

and the off-line updating model gives 

 𝐱𝐨𝐟𝐟 =  4.42 × 104 8.2 × 103 8.2 × 103 18.43 19.12 31.9 T  (6.23) 

The responses of these two updated models are compared with the experimental data in 

Figure 6.20. It is shown that, in Figure 6.20 (b), neither the real-time nor the off-line 

models can account for the roll-off behavior at low velocity of the tested MR dampers. 

Due to this limitation, the phenomenological MR damper model is selected instead of the 

simple Bouc-Wen model to be implemented as real-time updating model in all subse-

quent experimental tests. 

Using the phenomenological Bouc-Wen model, the governing equations of motion are 

represented by (6.3), (6.4), and (6.5). The corresponding state vector augmented with pa-

rameters is defined as 

 
𝐱 =  𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 T   

=  𝑦 𝑧 𝛼 𝛽 𝛾 𝑐0 𝑐1 𝑘0 𝑘1 𝑓0 
T  

(6.24) 

The units for all the parameters are described in section 6.3.1. With the purpose of reduc-

ing the number of parameters and maintain the passivity of the model, the same con-

straint 𝛽 = 𝛾 is imposed. Moreover, with the recorded data from the previous trial cases, 

the phenomenological Bouc-Wen models can be updated by off-line optimization scheme. 

Among these updated models, it is found that the value of parameter 𝑘0 is close to zero.  
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(a) 

 

(b) 

Figure 6.20 Response of MR damper of case --- 0.4in3Hz2V 

(a) load-displacement; (b) load-velocity 
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𝐱𝟎 =  𝛼 𝛽 𝛾 𝑐0 𝑐1 𝑘0 𝑓0 

T

=  2 × 104 5 × 103 5 × 103 50 200 100 10 T  
(6.25) 

The choice of these initial values are made by a rough estimate based on the off-line up-

dating results. The similar experiment procedure as the simple Bouc-Wen model updating 

is conducted. The UKF updating scheme is performed in real-time with the experiment, 

and off-line updating scheme is also applied for each case on the recorded data. A set of 

typical F-D and F-V curves under various voltage levels are shown in Figure 6.21 and 

Figure 6.22. 

 

Figure 6.21 F-D curves of MR damper of case --- 0.3in3Hz 

In the cases when the displacement input has a large amplitude and frequency, and the 

input current level is also high, noticeable amount of heat is generated during the 60s ex-
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influence on the behavior of the damper, Figure 6.23 and Figure 6.24 show the F-D and 

F-V curves of case 0.5in4Hz2.75V at different stages (beginning 15-20s, mid 35-40s, end 

55-60s), with temperature increases from room temperature 10 degree Celsius to about 60 

degree Celsius. As the temperature rises, the F-D loops shrinks a little and moves up-

wards, which is a sign of the increases of the balance force 𝑓0 of the charged accumulator. 
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The force in the high velocity region in the F-V loops also decreases. From Figure 6.23 

and Figure 6.24, the changes in the behavior of tested MR damper is small but enough to 

be noticed from the plots. Therefore, to consider this effect, in the off-line optimization, 

two updating results, one obtained with the data from the early stage of the experiment 

(10~15s), one from the end (last 5s) are provided to compare the temperature influence. 

To avoid causing any damage to the damper, the time duration of the case 0.5in5Hz2.75V 

has been reduced from 60s to 30s. 

 

Figure 6.22 F-V curves of MR damper of case --- 0.3in3Hz 

For the case 4in3Hz1.75V, the updated force is shown in Figure 6.25. The updated F-D 

and F-V curves for the last 5s are shown in Figure 6.26. In Figure 6.25, the force obtained 

from the real-time (rt) and off-line updating schemes are shown together with the force 

obtained by initial (ini) model and the measured force. Similar to section 5.2, the “con-

verge” curve is obtained by simulating the Bouc-Wen model using the entire parameters 

converging history of the UKF updating procedure. Both the “rt” and “off-line” curve can 
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curve.  Detailed zoom-in plots have been shown for the beginning and ending stage (“ini” 
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the updating process, it still has apparent discrepancies with the true response, but at the 

end of the updating process, its response has already converged to the “rt” curve. There-

fore, the “converge” curve actually shows how the updating process goes from the initial 

guess and finally approaches to the updated values. The time history of the real-time up-

dating results are shown in Figure 6.27 for each parameter. It can be seen that most of the 

parameters converge in less than 20 s, except 𝑐1 and 𝑘0. 

All the updating results are shown in Figure 6.28, Figure 6.29, and Figure 6.30, which 

corresponds to real-time, off-line (start), and off-line end --- 3 sets of updated models, 

respectively. The results from off-line and off-line end cases are close to each other. The 

values of real-time updated parameters 𝛼 and 𝛽 are different than the ones in off-line up-

dated models. For all the 3 different updated models, parameters 𝑐0 and 𝑓0  have fairly 

consistent results across different cases. However, the rest of parameters, for instance 𝑐1 

and 𝑘0, have much larger variation. These observations from the updated results may be 

due to the fact that there are more than one set of parameters that fits the tested MR dam-

per. Therefore, a further reduction on the number of parameters is conducted by fixing 

the values of 𝛽 = 𝛾, 𝑘0 and 𝑓0. The values are chosen as the averaged values for the cor-

responding updating scheme, 𝛽 = 𝛾 = 9.1 × 103, 𝑘0 = 25 and 𝑓0 = 30. 

To measure the updating errors, the following indices are used 

 𝐉𝟏 =  
 𝐹e

2
𝑛

𝑛
= RMS 𝐹e  (6.26) 

 𝐉𝟐 =  
 𝐹e

2
𝑛

𝑛
 
 𝐹m

2
𝑛

𝑛
 = RMS 𝐹e RMS 𝐹m   (6.27) 

 𝐉𝟑 =  
 𝐹e

2
𝑛

𝑛
𝐦𝐚𝐱
𝑛

𝐹m = RMS 𝐹e 𝐦𝐚𝐱
𝑛

𝐹m  (6.28) 
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where 𝐹m  is the measured force, 𝐹e = 𝐹up − 𝐹m  is the error between the force response 

𝐹up  obtained by updated model and the measured force, 𝑛 indicates the time index of the 

data. 𝐉𝟏 can be considered as an absolute measure of the updating error, whereas 𝐉𝟐 and 𝐉𝟑 

can be considered as relative updating errors. For all the indices, the lower the value, the 

better the updating results. 

In Figure 6.31, all three of the error indices obtained using the entire data set are plotted. 

Only the off-line (start) values are used in this figure. It is apparent that both real-time 

and off-line updating results show significant improvement in terms of reducing the abso-

lute updating error for 𝐉𝟏. The relative error indices 𝐉𝟐 and 𝐉𝟑 demonstrate that the per-

formance of real-time and off-line updating methods are comparable to each other. But 

off-line updating results give better results than the real-time in the low current level. To 

examine the temperature influence, the data for starting stage (10-15s) and ending stage 

(last 5s) are applied to the updated models. Both off-line (start) and off-line (end) are in-

cluded in this comparison study. From Figure 6.32 (only 𝐉𝟑 is plotted for succinctness), it 

is seen that, both two off-line cases give similar updating error. For real-time updating 

cases, because the parameter updating process usually takes a period of time to converge, 

the final real-time updating results correspond to the damper behavior towards the end of 

the experiments. Therefore, the updating error in the starting stage is larger than the end-

ing stage. This observation shows that the behavior of the damper does experience some 

change towards the end of the experiment, and temperature is likely to be the cause of 

such change. This conjecture is also supported by the fact that such differences increase 

as the current increases, which implies more heat be generated. It is the time progressing 

feature of the real-time updating help with this observation. 

A comparison is given by averaging the error indices for the cases with same displace-

ment input but different current levels. The averaged relative error index 𝐉𝟑 is shown in 

Figure 6.33. In general, the real-time updating results are comparable to the off-line up-

dating results, with the relative error index 𝐉𝟑 less than 0.07. The task execution time 

(TET) for all of the 72 test cases in this experimental step are summarized in Fig Figure 
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6.34. The maximum TETs are around 0.3 ms, which is less than the execution time step 

0.5 ms. This outcome demonstrates the real-time capability is achieved for all cases. 

 

Figure 6.23 F-D curves of MR damper of case --- 0.5in4Hz2.75v 

 

 

Figure 6.24 F-V curves of MR damper of case --- 0.5in4Hz2.75v 
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Figure 6.25 Comparison of force vs. time for case 4in3Hz1.75V 
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(a) 

 

 (b) 

Figure 6.26 Comparison of F-D (a) and F-V (b) plots for case 4in3Hz1.75V 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

250

disp (in)

fo
rc

e
 (

lb
f)

 

 

measured

rt

off-line

-8 -6 -4 -2 0 2 4 6 8
-200

-150

-100

-50

0

50

100

150

200

250

vel (in/s)

fo
rc

e
 (

lb
f)

 

 

measured

rt

off-line



201 

 

 

𝛼 

 

𝛽 & 𝛾 

 

𝑐0 

Figure 6.27 Updating history of each parameter for case 4in3Hz1.75V (cont.) 

0 10 20 30 40 50 60
1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
4

time(s)



0 10 20 30 40 50 60
4000

6000

8000

10000

time(s)


 &

 

0 10 20 30 40 50 60

20

40

60

time(s)

c
0



202 

 

 

𝑐1 

 

𝑘0 

 

 𝑓0 

Figure 6.27 Updating history of each parameter for case 4in3Hz1.75V 
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Figure 6.28 Real-time updating results for sinusoidal tests 
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Figure 6.29 Off-line (start) updating results for sinusoidal tests 
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Figure 6.30 Off-line end updating results for sinusoidal tests 

0.4 0.6 0.8 1
0

2

4

6
x 10

4  vs current OFF END

0.4 0.6 0.8 1
0

2

4

6

8
x 10

4 &  vs current OFF END

0.4 0.6 0.8 1
0

10

20

30

40

50

c
0
 vs current OFF END

0.4 0.6 0.8 1
0

100

200

300

c
1
 vs current OFF END

0.4 0.6 0.8 1
0

50

100

k
0
 vs current OFF END

0.4 0.6 0.8 1
20

25

30

35

40

f
0
 vs current OFF END

 

 

0.5 1
2

3

4

f
0
 vs current ON

 

 

0.3in2hz

0.3in3hz

0.3in4hz

0.3in5hz

0.4in2hz

0.4in3hz

0.4in4hz

0.4in5hz

0.5in2hz

0.5in3hz

0.5in4hz

0.5in5hz

2
0
5
 



206 

 

  

 

Figure 6.31 𝐉𝟏, 𝐉𝟐 and 𝐉𝟑 for sinusoidal tests with entire data set 
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Figure 6.32  𝐉𝟑 for sinusoidal tests at starting and ending stages 
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Figure 6.33 𝐉𝟑 for sinusoidal tests after averaging over different current levels 
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Figure 6.34 TETs for all the sinusoidal cases 
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6.4.3 Random Displacement Constant Voltage (Current) 

The difference between this experiment step and the previous step (section 6.4.2) is that 

the displacement input is random rather than sinusoidal. Two types of random inputs are 

used herein (see Figure 6.35), a random input with frequency content ranges from 2-5 Hz 

(band-pass or bp), and another random input with frequency content ranges from 0-5 Hz 

(low-pass or lp). For each type of random input, the maximum amplitude is scaled to 0.3 

in, 0.4 in and 0.5 in. The cases in this step are named as xin-randombp (or randomlp)-zV, 

denoting displacement input with 0.x in and band-pass (or low-pass) frequency content, 

voltage input with z volts. 

 

Figure 6.35 Time history and PSD of applied random displacement inputs (max-0.5in) 

For the random input case, the initial values for the parameters of both real-time and off-

line updating models are 

 
𝐱𝟎 =  𝛼 𝛽 = 𝛾 𝑐0 𝑐1 𝑘0 𝑓0 

T

=  2 × 104 5 × 103 50 200 100 10 T  
(6.29) 

which is the same as the sinusoidal case. 
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The off-line updating scheme in this section is conducted using the entire data history. 

For the case 4inranomlp1.75V, the updated force is shown in Figure 6.36, with the time 

history shown in Figure 6.37. The updated F-D and F-V curves for the last 5s are shown 

in Figure 6.38. In Figure 6.36, the force obtained from the real-time (rt) and off-line up-

dating schemes are shown together with the force obtained by initial (ini) model and the 

measured force. The “converge” curve still has apparent discrepancies with the true re-

sponse at the beginning of the updating process. But its response converges to the “rt” 

curve at the end of the updating process. This finding is consistent with the result in sec-

tion 6.4.2. The time history of the real-time updating results are shown in Figure 6.39 for 

each parameter.  

The real-time and off-line updating results are summarized in Figure 6.40 and Figure 

6.41, respectively. As in the previous case, for both real-time and off-line updated models, 

the model parameters 𝑐0 and 𝑓0 have fairly consistent results across all the cases. Howev-

er, the rest of parameters, for instance 𝑐1 and 𝑘0, have much larger variation. 

In Figure 6.42, all three error indices using entire data set for this experimental case are 

plotted. Compared to Figure 6.31, the RMS error of the initial model is much less than 

the sinusoidal input case. But it is still shown that both real-time and off-line updated 

models yields less RMS error  𝐉𝟏 than the initial model. This observation is also seen in 

Figure 6.43, which is the averaged error index 𝐉𝟏 over all the current levels. The relative 

error indices 𝐉𝟐 and 𝐉𝟑 demonstrate that the updating error of real-time updated models 

are slightly larger than the off-line updated ones, but still comparable in general. Similar 

observations can be made from the error indices averaged over various current levels (on-

ly 𝐉𝟏 is shown here in Figure 6.43). These findings are consistent with the previous sinu-

soidal cases. It is noted that in Figure 6.42, there is a clear increasing trend of the 3 updat-

ing error indices with respect to the current level, which may be due to the increasing 

damping force as the current increases. TETs shown in Figure 6.44 also demonstrates that 

the real-time capability is achieved. 
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Figure 6.36 Comparison of force vs. time for case 4inrandomlp1.75V
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) (cont.) 
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Figure 6.37 Zoom-in view of the comparison of force vs. time for case 4inrandomlp1.75V (legend in the first figure) 
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(a) 

 

(b) 

Figure 6.38 Comparison of F-D (a) and F-V (b) plots for case 4inrandomlp1.75V 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-150

-100

-50

0

50

100

150

200

250

disp (in)

fo
rc

e
 (

lb
f)

 

 

measured

rt

off-line

-6 -5 -4 -3 -2 -1 0 1 2 3 4
-200

-150

-100

-50

0

50

100

150

200

250

vel (in/s)

fo
rc

e
 (

lb
f)

 

 

measured

rt

off-line



222 

 

 

𝛼 

 

𝛽 & 𝛾 

 

𝑐0 

Figure 6.39 Updating history of each parameter for case 4inrandomlp1.75V (cont.) 
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Figure 6.39 Updating history of each parameter for case 4inrandomlp1.75V
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Figure 6.40 Real-time updating results for random tests 
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Figure 6.41 Off-line updating results for random tests 
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Figure 6.42 𝐉𝟏, 𝐉𝟐 and 𝐉𝟑 for random tests with entire data set 
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Figure 6.43 𝐉𝟏 for random tests after averaging over different current levels 
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Figure 6.44 TETs for all the random cases 
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6.4.4 Constructing MR Damper Models for Varying Current 

As mentioned in section 6.1, the ultimate goal of updating the MR damper is to provide a 

model which can capture the damper‟s behavior under a variety of displacement and elec-

tric current inputs, preferably random displacements and random current (or driven vol-

tage) within a certain bandwidth. With the updating results obtained from sections 6.4.2 

and 6.4.3, it is possible to relate each model parameters to the varying current levels. 

However, with the parameter variations observed in Figure 6.28, Figure 6.29, Figure 6.30, 

Figure 6.40, Figure 6.41, there may be more than one set of parameters can fit the applied 

phenomenological Bouc-Wen model. To mitigate the overparameterization of the model, 

and  reduce the variation of the updating results, as well as the computational cost, it is 

desirable to fix certain parameters during the updating. The values are chosen as the av-

eraged values of the corresponding off-line updating scheme, 𝛽 = 𝛾 = 9.1 × 103 , 

𝑘0 = 25 and 𝑓0 = 30. 

For comparison purposes, the cases 4in3Hz1.75V and 4inranomlp1.75V are selected to 

show the updating results. Compared with the results in sections 6.4.2 and 6.4.3, it is 

shown that, in Figure 6.45 and Figure 6.47, at the beginning stage, the force generated 

from the initial model gives less error than the ones in Figure 6.25 (section 6.4.2) and 

Figure 6.38 (section 6.4.3). This finding may be due to the fact that 3 parameters have 

been fixed to a set of properly selected values. In general, the updated force of each case 

matches the measured force well. 

With these fixed parameter values, the real-time and off-line updating schemes for both 

sinusoidal and random inputs are carried out again. The updating results along with the 

corresponding linear curve-fitting results are compared for each model parameter. The 

resulting model sets are listed below: 

MDL_rt_sin_cv: MR damper model obtained by UKF real-time updating using sinu-

soidal input. The curve fitting results are shown in Figure 6.49. The results from cases 

“3in4Hz”, “4in3Hz”, and “5in3Hz” show large variations from the rest data set, and 

therefore are omitted in calculating the curve fitting results. 
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MDL_off_sin_cv: MR damper model obtained by off-line optimization using sinu-

soidal input. Here the updating results using the data from starting stage (10-15s) are 

shown in Figure 6.50, whereas the results from ending stage (last 5s) are shown in 

Figure 6.51. 

MDL_rt_random_cv: MR damper model obtained by UKF real-time updating using 

random input. The curve fitting results are shown in Figure 6.52.  

MDL_off_random_cv: MR damper model obtained by off-line optimization using 

random input. The curve fitting results are shown in Figure 6.53. In this case, the en-

tire data set is used to obtained the off-line updating results. 

In calculating the linear curve fit, it is shown that the parameter 𝛼 starts to roll off when 

the current reach 0.75A. Therefore, the data sets corresponding to 2.5V and 2.75V (0.85A 

and 0.95A) are omitted when calculating the linear curve fit. In the later random current 

experiments, the input voltage levels also have been set not to exceed the 2.25V. After 

the curve fitting, the following linear relationship is established. 

 𝛼 𝐼 = 𝛼𝑎 + 𝛼𝑏𝐼 (6.30) 

 𝑐0 𝐼 = 𝑐0𝑎 + 𝑐0𝑏𝐼 (6.31) 

 𝑐1 𝐼 = 𝑐1𝑎 + 𝑐1𝑏𝐼 (6.32) 

where 𝐼  is the contant current level. The units for 𝛼𝑏 , 𝑐0𝑏 , and 𝑐1𝑏  are [lbf/(inamp)], 

[lbfs/(inamp)], and [lbfs/(inamp)]. The updating errors for both sinusoidal inputs and 

random inputs are shown in Figure 6.54 and Figure 6.55, in the form of three error indic-

es defined in equations (6.26), (6.27), and (6.28). Comparing these results to the results in 

section 6.4.2 and 6.4.3, the values of the error indices have slight increased. 

The obtained updated models are summarized in Table 6.2. For the case 

“MDL_off_sin_cv”, only the updated model using the data from starting stage is used. 

This choice is made because at the ending stage (last 5s), the temperature is much higher 

than the regular damper working state. Therefore, the off-line model obtained using the 
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data from the starting stage could serve as a better comparison candidate, since the com-

panion temperature is comparable to the regular working state.  

Table 6.2 Updated models under constant voltage/current 

Parameters 𝛼𝑎  𝛼𝑏  𝛽 = 𝛾 𝑐0𝑎  𝑐0𝑏  𝑐1𝑎  𝑐1𝑏  𝑘0 𝑓0 

MDL_rt_sin_cv 4066.73 26692.32 9100.00 4.33 16.68 56.52 111.69 25.00 30.00 

MDL_off_sin_cv 8732.34 22081.83 9100.00 5.73 14.46 -30.69 250.63 25.00 30.00 

MDL_rt_random_cv 3853.61 28845.55 9100.00 6.26 13.67 138.33 123.45 25.00 30.00 

MDL_off_random_cv 6162.69 22465.78 9100.00 4.36 22.42 -100.05 613.42 25.00 30.00 
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Figure 6.45 Comparison of force vs. time for case 4in3Hz1.75V (fixed) 

 

10 20 30 40 50 60
-500

0

500

time (s)

fo
rc

e
 (

lb
f)

 

 

4.8 5 5.2 5.4 5.6
-200

0

200

400

time (s)

fo
rc

e
 (

lb
f)

59 59.5 60
-200

0

200

400

time (s)

fo
rc

e
 (

lb
f)

measured rt off-line converge ini

2
3
2
 



233 

 

 

(a) 

 

 (b) 

Figure 6.46 Comparison of F-D (a) and F-V (b) plots for case 4in3Hz1.75V (fixed)
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Figure 6.47 Comparison of force vs. time for case 4inrandomlp1.75V (fixed) 
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(a) 

 

(b) 

Figure 6.48 Comparison of F-D (a) and F-V (b) plots for case 4inrandomlp1.75V (fixed)
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Figure 6.49 Real-time updating results for sinusoidal tests with fixed parameters 
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Figure 6.50 Off-line (start) updating results for sinusoidal tests with fixed parameters 
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Figure 6.51 Off-line end updating results for sinusoidal tests with fixed parameters 
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Figure 6.52 Real-time updating results for random tests with fixed parameters 
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Figure 6.53 Off-line updating results for random tests with fixed parameters 
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Figure 6.54 𝐉𝟏, 𝐉𝟐 and 𝐉𝟑 for sinusoidal tests with entire data set and fixed parameters 
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Figure 6.55 𝐉𝟏, 𝐉𝟐 and 𝐉𝟑 for random tests with entire data set and fixed parameters 
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6.4.5 Random Displacement Random Voltage (Current) 

In this experimental step, not only the displacement input is random, but the input current 

also changes from constant to random as well. This random voltage input is shifted and 

scaled from a low-pass band-limited white noise, such that the range of the input is be-

tween 1.5V and 2.25V, which is the observed linear range in the curve fitting process in 

section 6.4.4. Its time history and power spectral density (with respect to its mean value) 

are shown in Figure 6.56. 

 

Figure 6.56 Time history and PSD of applied random voltage input 
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Subcase I - without power supply unit: This subcase does NOT consider the power 

supply unit as part of the damping system. The electronic input to the damping sys-

tem is the measured current in the closed circuit. With the same random displacement 

inputs as the section 6.4.3, together with a random current input (obtained by apply a 

random voltage on the power supply unit), two real-time updated models 

(MDL_rt_current_rv and MDL_rt_current_rv_fix) are obtained with UKF method. 

The difference between the two is MDL_rt_current_rv_fix fixes the three variables 

as 𝛽 = 𝛾 = 9.1 × 103, 𝑘0 = 25 and 𝑓0 = 30. 

Subcase II - with power supply unit: This subcase includes the power supply unit as 

part of the damping system. Therefore, the electronic input to the damping system is 

the measured voltage applied to the power supply unit. This model used in this sub-

case is more complicated since the parameters characterizing the power supply com-

ponent are included in the updating procedure as well (see section 6.3.3). Again, with 

the same random displacement inputs and random voltage inputs, two real-time up-

dated models (MDL_rt_power_rv and MDL_rt_power_rv_fix) are obtained with 

UKF method. 

For the subcase I, to obtain MDL_rt_current_rv, the initial values for the model para-

meters of the real-time updating are 

 
𝐱𝟎 =  𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑐0𝑎 𝑐0𝑏 𝑐1𝑎 𝑐1𝑏 𝑘0 𝑓0 

T

=  2 × 104 4 × 104 2 × 104 10 10 100 200 100 10 T  
(6.33) 

To obtain MDL_rt_current_rv_fix, the initial values for the parameters of the real-time 

updating model are 

 
𝐱𝟎

fix =  𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑐0𝑎 𝑐0𝑏 𝑐1𝑎 𝑐1𝑏 𝑘0 𝑓0 
T

=  104 3 × 104 9.1 × 103 10 10 100 200 25 30 T  
(6.34) 

The detailed updating results are shown for the case 4inbandpass, both with and without 

fixing parameters. Because there is no off-line updating scheme in this case, only the 

force updated by real-time “rt” scheme is compared with the measured force. In Figure 
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6.57, it is shown that the force generated by the real-time updated model matches well 

with the measured force. Similar performance can be found for fixed parameter case. The 

parameter updating history is not shown here for succinctness.  

Table 6.3 Updated models under random voltage/current (no fixed parameters) 

Cases  

(amp-bandwidth) 
𝛼𝑎  𝛼𝑏  𝛽 = 𝛾 𝑐0𝑎  𝑐0𝑏  𝑐1𝑎  𝑐1𝑏  𝑘0 𝑓0 

0.3in-bp 13994.56 35037.13 21719.63 7.21 9.76 104.05 205.10 69.47 28.97 

0.3in-lp 14123.88 34906.60 22355.70 6.27 7.33 106.35 207.80 80.78 31.54 

0.4in-bp 13061.67 34012.79 21281.28 7.65 9.01 92.82 192.05 40.16 30.06 

0.4in-lp 13287.28 34008.67 22175.51 8.23 7.09 100.22 201.25 52.71 32.05 

0.5in-bp 12503.10 33110.28 20763.31 8.02 7.43 85.24 181.62 22.18 30.73 

0.5in-lp 13088.85 33643.70 21766.81 9.75 4.78 95.45 196.26 29.48 31.75 

MDL_rt_current_rv  13343.22 34119.86 21677.04 7.85 7.57 97.36 197.34 49.13 30.85 

The real-time model updating results without fixing any parameters are summarized in 

Table 6.3. A summary of the normalized parameters are plotted in Figure 6.58 as well. 

From Figure 6.58, the variation for each updated parameter over different input cases are 

small. Therefore the parameters for “MDL_rt_current_rv” are obtained by averaging 

each parameter over all 6 tested cases. The parameters for “MDL_rt_current_rv_fix” 

are obtained in a similar way in Table 6.4.  It is noted from the summarized updated 

model parameters in Table 6.3 and Table 6.4 that, the improvement for parameters 𝑐1𝑎  

and 𝑐1𝑏  are very limited, whereas the change of the value of 𝛼𝑎  is about 30%, and 200% 

for 𝑓0. 

Table 6.4 Updated models under random voltage/current (3 fixed parameters) 

Cases  

(amp-bandwidth) 
𝛼𝑎  𝛼𝑏  𝛽 = 𝛾 𝑐0𝑎  𝑐0𝑏  𝑐1𝑎  𝑐1𝑏  𝑘0 𝑓0 

0.3in-bp 7194.19 26402.66 9100.00 8.91 6.31 103.47 202.35 25.00 30.00 

0.3in-lp 6932.02 26141.84 9100.00 7.03 6.04 109.24 204.74 25.00 30.00 

0.4in-bp 6850.56 25699.14 9100.00 9.89 4.57 90.48 194.25 25.00 30.00 

0.4in-lp 6664.08 25439.85 9100.00 9.26 4.62 106.12 202.71 25.00 30.00 

0.5in-bp 6728.17 25068.22 9100.00 10.08 3.36 85.33 188.85 25.00 30.00 

0.5in-lp 6734.87 25173.30 9100.00 10.64 2.52 105.22 201.98 25.00 30.00 

MDL_rt_current_rv_fix 6850.65 25654.17 9100.00 9.30 4.57 99.98 199.15 25.00 30.00 
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The relative updating error 𝐉𝟑 for both with or without fixing parameters is shown in Fig-

ure 6.63. In this figure, the errors of the two initial models defined in equations (6.33) and 

(6.34) are also plotted for comparison. It is shown that, the fixed-parameter model 

MDL_rt_current_rv_fix results in less error, but in general, the two models are comparable. 

The task execution time (TET) for each test case is shown in Figure 6.64. It is clear that 

the TET is much less than the time step constraints and hence the real-time performance 

is achieved. 

The subcase II is more challenging due to the two extra parameters needed to characterize 

the power supply unit (𝑅-Omh and 𝐿-Henry), to obtain MDL_rt_power_rv, the initial 

values for the parameters of the real-time updating model are  

 
𝐱𝟎 =  𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑐0𝑎 𝑐0𝑏 𝑐1𝑎 𝑐1𝑏 𝑅 𝐿 𝑘0 𝑓0 

T

=  2 × 104 4 × 104 2 × 104 10 10 100 200 1 10−2 100 10 T  
(6.35) 

To obtain MDL_rt_power_rv_fix, the initial values for the parameters of the real-time 

updating model are 

 
𝐱𝟎

fix =  𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑐0𝑎 𝑐0𝑏 𝑐1𝑎 𝑐1𝑏 𝑅 𝐿 𝑘0 𝑓0 
T

=  104 3 × 104 9.1 × 103 10 10 100 200 1 10−2 25 30 T  
(6.36) 

Again, the case 4inbandpass, both with and without fixing parameters, is selected for de-

tailed presentation. The force responses using the updated models without fixing parame-

ters are shown in Figure 6.59. The case in which the parameters are fixed yields similar 

plot and hence is omitted. Because the power supply unit is also updated, the current of 

the updated models is plotted for comparison purpose as well. In Figure 6.60, without 

fixing the parameters, the current obtained from the real-time updated model matches 

well with the measured current, which indicates the model of the power supply unit has 

been successfully updated. Similar results are obtained for the case with fixing parame-

ters, and are omitted. It is also noted that there are two new parameters 𝑅 and 𝐿 included 

in the real-time updating. The corresponding updating history for the case in which the 

parameters are not fixed can be found in Figure 6.61.  
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The real-time model updating results without fixing any parameters are summarized in 

Table 6.5. Again, the variation for each updated parameter over different input cases are 

small (see Figure 6.62), and the parameters for “MDL_rt_power_rv” are obtained by 

averaging each parameter over all the tested cases. The parameters for 

“MDL_rt_power_rv_fix” are obtained in a similar way in Table 6.6.  

Table 6.5 Updated models with power supply under random voltage (no fixed parameters) 

Cases  

(amp-bandwidth) 
𝛼𝑎  𝛼𝑏  𝛽 = 𝛾 𝑐0𝑎  𝑐0𝑏  𝑐1𝑎  𝑐1𝑏  𝑅 

𝐿 

× 10−3 
𝑘0 𝑓0 

0.3in-bp 13356.57 34454.31 22121.73 6.71 9.14 101.92 203.14 2.05 6.11 67.83 32.85 

0.3in-lp 13793.72 34689.99 22340.88 6.22 7.72 106.89 208.51 2.08 4.78 81.23 31.94 

0.4in-bp 12797.00 33731.34 21646.85 8.23 8.32 94.62 194.25 2.04 6.56 43.57 32.48 

0.4in-lp 12963.43 33799.75 22010.00 7.86 7.71 98.96 200.28 2.03 4.97 55.61 32.80 

0.5in-bp 12697.82 33378.73 20876.63 8.80 6.87 88.66 185.78 2.10 4.09 29.69 31.77 

0.5in-lp 12962.17 33546.03 21631.71 9.64 5.11 95.43 195.88 2.03 6.02 35.56 32.27 

MDL_rt_power_rv  13095.12 33933.36 21771.30 7.91 7.48 97.75 197.97 2.05 5.42 52.25 32.35 

 

Table 6.6 Updated models with power supply under random voltage (3 fixed parameters) 

Cases  

(amp-bandwidth) 
𝛼𝑎  𝛼𝑏  𝛽 = 𝛾 𝑐0𝑎  𝑐0𝑏  𝑐1𝑎  𝑐1𝑏  𝑅 

𝐿 

× 10−3 
𝑘0 𝑓0 

0.3in-bp 6696.78 25564.02 9100.00 9.84 3.48 111.48 204.89 2.05 6.11 25.00 30.00 

0.3in-lp 6822.71 26052.24 9100.00 6.74 6.25 109.87 205.03 2.08 4.78 25.00 30.00 

0.4in-bp 6558.31 25157.93 9100.00 11.23 2.55 106.87 201.35 2.04 6.56 25.00 30.00 

0.4in-lp 6515.71 25343.53 9100.00 8.75 5.40 108.07 203.85 2.03 4.97 25.00 30.00 

0.5in-bp 6761.78 25149.46 9100.00 11.03 2.41 99.34 196.24 2.11 4.22 25.00 30.00 

0.5in-lp 6696.28 25136.86 9100.00 10.61 2.71 105.76 202.63 2.03 6.02 25.00 30.00 

MDL_rt_power_rv_fix  6675.26 25400.67 9100.00 9.70 3.80 106.90 202.33 2.05 5.44 25.00 30.00 

 

The relative error index 𝐉𝟑 of the damping force for both cases (with or without fixing 

parameters) are shown in Figure 6.65. The values of the updating errors are all less than 

0.1, which is comparable to subcase I. For the updating results of electronic current, the 

relative error index 𝐉𝟑 is shown in Figure 6.66. In both Figure 6.65 and Figure 6.66, the 

errors of the two initial models defined in equations (6.35) and (6.36) are also plotted for 

comparison purpose. It is shown that, based on the updating results for damping force, 
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the fixed-parameter model MDL_rt_current_rv_fix gives less error, but in general, the 

two models are comparable. For the updating results for electronic current, the two mod-

els yield almost the same updating errors. The task execution time (TET) for each test 

case is shown in Figure 6.67. Because there are two more parameters involved due to the 

model of power supply unit, the TET is larger than the subcase I, but it is still within the 

time step constraints. This case is also the most computationally demanding case in the 

entire experimental study. 
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Figure 6.57 Subcase I: Comparison of force vs. time for case 4inbp (no fix) 
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Figure 6.58 Subcase I: Summary of normalized updated model parameters for case 4inbp (no fix) 

a_a/1e3 a_b/1e3 b/1e3 c0a/10 c0b/10 c1a/10 c1b/10 k0/10 f0/10
0

5

10

15

20

25

30

35

40

Normalized Parameter

P
a

ra
m

e
te

r 
V

a
lu

e

 

 

0.3in-bp 0.3in-lp 0.4in-bp 0.4in-lp 0.5in-bp 0.5in-lp rt-current-rv

2
5
0
 



251 

 

 

 

Figure 6.59 Subcase II: Comparison of force vs. time for case 4inbp (no fix) 
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Figure 6.60 Subcase II: Comparison of current vs. time for case 4inbp (no fix) 
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Figure 6.61 Subcase II: Updating history of each parameter for case 4inbp (no fix) (cont.) 
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Figure 6.61 Subcase II: Updating history of each parameter for case 4inbp (no fix) (cont.) 
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Figure 6.61 Subcase II: Updating history of each parameter for case 4inbp (no fix) (cont.) 
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Figure 6.61 Subcase II: Updating history of each parameter for case 4inbp (no fix) 
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Figure 6.62 Subcase II: Summary of normalized updated model parameters for case 4inbp (no fix) 
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Figure 6.63 Subcase I: 𝐉𝟑 for random voltage tests without power supply unit model 
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Figure 6.64 Subcase I: TETs for random voltage tests without power supply unit model 
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Figure 6.65 Subcase II: 𝐉𝟑 (force) for random voltage tests with power supply unit model 
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Figure 6.66 Subcase II: 𝐉𝟑 (current) for random voltage tests with power supply unit model 
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Figure 6.67 Subcase II: TETs for random voltage tests with power supply unit model 
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6.4.6 Comparison Tests --- New Random Displacement New Random Voltage 

(Current) 

In this experimental step, a newly generated set of random displacement with maximum 

amplitude 0.5in is applied (see Figure 6.68), which includes a random input with fre-

quency content ranges from 2-5 Hz (band-pass or bp), and another random input with 

frequency content ranges from 0-5 Hz (low-pass or lp). For the current input, a new ran-

dom voltage input is applied to the power supply unit as well (see Figure 6.69).  

 

Figure 6.68 Time history and PSD of newly applied random displacement inputs  

This step is not designed to be used for real-time updating, but rather to examine the per-

formance of the models previously obtained by real-time and off-line updating schemes 

(see Table 6.2 to Table 6.6). Again, the following two subcases are defined: 

Subcase I - without power supply unit: This subcase does NOT consider the power 

supply unit as part of the damping system. The models will be tested in this subcase 

are: MDL_rt_current_rv, MDL_rt_sin_cv, MDL_rt_random_cv, initial model eq-

uation (6.33), MDL_rt_current_rv_fix, MDL_off_sin_cv, MDL_off_random_cv, 

initial model equation (6.34).  
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Subcase II - with power supply unit: This subcase includes the power supply unit as 

part of the damping system. The models will be tested in this subcase are: 

MDL_rt_power_rv, MDL_rt_sin_cv, MDL_rt_random_cv, initial model equation 

(6.35), MDL_rt_power_rv_fix, MDL_off_sin_cv, MDL_off_random_cv, initial 

model equation (6.36). Since the four models updated under constant voltage, 

MDL_rt_sin_cv, MDL_rt_random_cv, MDL_off_sin_cv, MDL_off_random_cv 

do not contain the parameters for power supply unit, an off-line optimization scheme 

is applied only to identify the power supply units by applying the measured voltage 

and current. The identified parameters (𝑅 = 2.15 Ohm and 𝐿 = 5.73 × 10−3 Henry) 

are added to these four models so that they could join the comparison study. 

For subcase I, the low-pass case is selected for detailed presentation. The forces generat-

ed by the aforementioned 6 models are plotted in Figure 6.70 and Figure 6.71. The results 

from both plots look similar and the forces generated from the 6 updated models match 

well with the measured force. The F-D and F-V curves of these 6 models are also shown 

in Figure 6.72 and Figure 6.73. 

Table 6.7 shows the error indices for each model with the random band-pass displace-

ment input, and Table 6.8 shows the error indices for each model with the random low-

pass displacement input. The relative error index 𝐉𝟑 is plotted in Figure 6.74. It is shown 

that, all the 6 updated models give similar performance. Among all the 6 models, the er-

ror generated by MDL_rt_sin_cv and MDL_off_sin_cv are slightly larger than the rest 

of the models. All the relative error index 𝐉𝟑 are less than 0.1, which demonstrates good 

performance of the updated models. This result implies that more than one set of parame-

ters can be applied to the tested MR damper. 

For the subcase II, the band-pass case is selected for detailed presentation. The forces 

generated by the aforementioned 6 models are plotted in Figure 6.75 and Figure 6.76; and 

the currents are plotted in Figure 6.77 and Figure 6.78. Again, the forces and current gen-

erated from the 6 updated models match well with the measured ones. The F-D and F-V 

curves of these 6 models are also shown in Figure 6.79 and Figure 6.80. 
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Figure 6.69 Time history and PSD of newly applied random volt input 

The error indices for damping forces are shown in Table 6.9 and Table 6.10; the error in-

dices for current updating are shown in Table 6.11 and Table 6.12. The findings are very 
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plotted in Figure 6.81 and Figure 6.82. Again, all resulting relative error indices 𝐉𝟑 are 

less than 0.1. This outcome also implies more than one set of parameters can be applied 
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Table 6.7 Subcase I: Error indices for the bandpass displacement test case 

  0.5in bandpass random voltage 

error index rt-current-rv rt-sin-cv rt-random-cv ini_{all} rt-current-rv-fix off-sin-cv off-random-cv ini_{fix} 

J1 20.21 23.05 18.56 62.09 19.79 22.13 19.91 49.63 

J2 0.13 0.15 0.12 0.39 0.13 0.14 0.13 0.31 

J3 0.07 0.08 0.06 0.21 0.07 0.07 0.07 0.17 

 

 

 

Table 6.8 Subcase I: Error indices for the lowpass displacement test case 

  0.5in lowpass random voltage 

error index rt-current-rv rt-sin-cv rt-random-cv ini_{all} rt-current-rv-fix off-sin-cv off-random-cv ini_{fix} 

J1 22.04 25.05 18.58 60.35 19.92 24.98 19.00 47.81 

J2 0.15 0.17 0.12 0.41 0.13 0.17 0.13 0.32 

J3 0.07 0.08 0.06 0.20 0.07 0.08 0.06 0.16 
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6
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Table 6.9 Subcase II: Error indices of damping force for the bandpass displacement test case 

  0.5in bandpass random voltage 

error index rt-power-rv rt-sin-cv rt-random-cv ini_{all} rt-power-rv-fix off-sin-cv off-random-cv ini_{fix} 

J1 19.18 24.41 18.26 61.74 19.14 23.04 19.32 50.00 

J2 0.12 0.15 0.12 0.39 0.12 0.15 0.12 0.32 

J3 0.06 0.08 0.06 0.21 0.06 0.08 0.07 0.17 

 

 

Table 6.10 Subcase II: Error indices of damping force for the lowpass displacement test case 

  0.5in lowpass random voltage 

error index rt-power-rv rt-sin-cv rt-random-cv ini_{all} rt-power-rv-fix off-sin-cv off-random-cv ini_{fix} 

J1 21.38 25.35 18.47 61.61 19.42 25.23 18.87 49.87 

J2 0.14 0.17 0.12 0.41 0.13 0.17 0.13 0.34 

J3 0.07 0.09 0.06 0.21 0.07 0.08 0.06 0.17 
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6
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Table 6.11 Subcase II: Error indices of current for the bandpass displacement test case 

  0.5in bandpass random voltage 

error index rt-power-rv rt-sin-cv rt-random-cv ini_{all} rt-power-rv-fix off-sin-cv off-random-cv ini_{fix} 

J1 0.02 0.01 0.01 0.06 0.02 0.01 0.01 0.06 

J2 0.41 0.18 0.18 1.13 0.41 0.18 0.18 1.13 

J3 0.03 0.01 0.01 0.08 0.03 0.01 0.01 0.08 

 

 

 

Table 6.12 Subcase II: Error indices of current for the lowpass displacement test case 

  0.5in lowpass random voltage 

error index rt-power-rv rt-sin-cv rt-random-cv ini_{all} rt-power-rv-fix off-sin-cv off-random-cv ini_{fix} 

J1 0.02 0.01 0.01 0.06 0.02 0.01 0.01 0.06 

J2 0.40 0.18 0.18 1.13 0.40 0.18 0.18 1.13 

J3 0.03 0.01 0.01 0.08 0.03 0.01 0.01 0.08 
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Figure 6.70 Subcase I: Comparison of force vs. time for case 5inlp (no fix) 
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Figure 6.71 Subcase I: Comparison of force vs. time for case 5inlp (fix) 
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(a) 

 

 (b) 

Figure 6.72 Subcase I: Comparison of F-D (a) and F-V (b) plots for case 5inlp (no fix) 
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(a) 

 

 (b) 

Figure 6.73 Subcase I: Comparison of F-D (a) and F-V (b) plots for case 5inlp (fix) 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-200

-100

0

100

200

300

disp (in)

fo
rc

e
 (

lb
f)

 

 

measured

rt
current-f ix

off
sin

off
random

-8 -6 -4 -2 0 2 4 6 8
-300

-200

-100

0

100

200

300

vel (in/s)

fo
rc

e
 (

lb
f)

 

 

measured

rt
current-f ix

off
sin

off
random



273 

 

 

 

 

 

Figure 6.74 Subcase I: 𝐉𝟑 for random voltage comparison tests without power supply unit model 
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Figure 6.75 Subcase II: Comparison of force vs. time for case 5inbp (no fix) 
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Figure 6.76 Subcase II: Comparison of force vs. time for case 5inbp (fix) 
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Figure 6.77 Subcase II: Comparison of current vs. time for case 5inbp (no fix) 
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Figure 6.78 Subcase II: Comparison of current vs. time for case 5inbp (fix) 
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(a) 

 

 (b) 

Figure 6.79 Subcase II: Comparison of F-D (a) and F-V (b) plots for case 5inbp (no fix) 
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(a) 

 

 (b) 

Figure 6.80 Subcase II: Comparison of F-D (a) and F-V (b) plots for case 5inbp (fix) 
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Figure 6.81 Subcase II:  𝐉𝟑 for random voltage comparison tests with power supply unit model 
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Figure 6.82 Subcase II: 𝐉𝟑 (current) for random voltage comparison tests with power supply unit model 

 

 

0.5in-bp-all&fix 0.5in-lp-all&fix
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

case (amplitude - bw - param)

re
la

ti
v
e

 R
M

S
/M

A
X

 

 

rt-power-rv rt-sin-cv rt-random-cv ini
all rt-power-rv-fix off-sin-cv off-random-cv ini

fix

2
8
1
 



282 

 

6.5 Summary 

This chapter presents the details of the experiments to demonstrate real-time updating of 

MR damper models. It is shown that, the selected MR damper model - phenomenological 

Bouc-Wen model can be updated by the UKF method in real-time with satisfactory accu-

racy, with the relative error index 𝐉𝟑 within 6-8%. The updated models are compared with 

the measured force and current under random displacement input and random voltage in-

put. The results show good agreement. 

This experimental study spans from sinusoidal displacement input combined with con-

stant voltage to random displacement input with constant voltage, and finally to random 

displacement input with random voltage. The UKF method serves well as a real-time up-

dating scheme in the experimental study, as the real-time performance has been achieved 

for all the cases. Parameters such as 𝛽 = 𝛾, 𝑘0 and 𝑓0 have been fixed during the updat-

ing to mitigate the possible overparameterization. Six different sets of updated models 

have been obtained through different approaches. In the comparison tests, the value of the 

relative error index 𝐉𝟑 for the damping force obtained from all the updated models are 

less than 0.1, and less than 0.03 for the current. As shown in Table 6.7 to Table 6.12, the 

errors of the updated forces and currents have been reduced by 3 times compared to those 

generated using the initial models. It is known that the initial values of the model and the 

noise level would influence on the final results in model updating applications. In current 

study, the same initial values are used for all the cases with constant voltage input under 

the influence of noise, and the MR damper model has been successfully updated. This 

demonstrates good robustness of the current real-time implementation. 

During the course of the experimental study, several modifications and trials have been 

made, such as conducting preliminary experiments to finalize the model selection and 

provide rough estimate on the initial values and noise level measurements, setting boun-

daries for the amplitudes and frequencies of displacement and voltage inputs, and fixing 

the values of 𝛽 = 𝛾, 𝑘0 and 𝑓0 in the phenomenological Bouc-Wen model to reduce the 

variation of the updated parameters. Several findings are also worth further investigation, 
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such as the improvement of these results with different MR damper models, and the poss-

ible temperature influence on the MR damper behavior. 
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CHAPTER 7 

EXPERIMENTAL STUDY OF 

 NONLINEAR BUILDING MODEL UPDATING 

This chapter presents the results of the experimental study on real-time updating of a 

small scale (1/10) steel shear building structure. The related numerical simulation is re-

ported in section 5.3 with the UKF is chosen as the updating method. In this chapter, the 

UKF is again chosen for real-time updating. The experimental study presented herein 

aims at providing a real-time updating method for the proposed nonlinear building struc-

ture. The performance of the UKF updating method is examined by comparing the re-

sponse (static reaction force or acceleration) of the updated model with the measured 

ones from the quasistatic test and shake table test. 

7.1 Purpose and Procedure of Updating Nonlinear Building 

The purpose of this experimental study is to implement the real-time updating scheme to 

update nonlinear dynamic models for shear building structure. A real-time updating 

scheme can provide an up-to-date estimation to the building behavior. And the use of a 

nonlinear hysteretic model in this study improves upon the current approaches used in 

structural health monitoring methods, in that it does not just focus on the linear stiffness 

reduction but rather the entire nonlinear behavior under extreme loading condition. To 

accomplish this goal, the following tests are conducted: 

1. Uniaxial tension test 

The uniaxial tension test is conducted for the steel specimen of the material used to 

make the columns of the experimental building structure. The goal is to determine the 
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Young‟s Modulus and yielding point of the steel. Since the shake table test that will 

be conducted later for real-time updating is a damaging test, it is desirable to choose a 

proper steel type for the building columns, so that the building structure can sustain 

the entire course of the damaging experiments. 

2. Quasistatic cyclic test 

By applying cyclic displacement input with increasing amplitude to the building 

structure, the quasistatic cyclic test is performed first to examine the nonlinear hyste-

retic behavior of the structure. There are two subcases in this test: 

Subcase I - intermittent cyclic tests with hammer tests. Apply each displacement 

cycle with increasing peak amplitude separately and unload, then apply hammer test 

to check the natural frequency of the building model at the unloading state to consider 

the correlation between the natural frequency and certain behavioral change of the 

building model, for example, the occurrence of hysteresis loops. This test is used to 

demonstrate the use of natural frequency in detecting structural damage. 

Subcase II - continuous cyclic test. A continuous cyclic displacement history with in-

ceasing peak amplitude is applied to the building model. The entire load-displacement 

history is recorded. With this nonlinear hysteretic behavior, an off-line updating me-

thod can be applied and an updated static model is obtained. 

3. Shake table tests 

The shake table test is conducted to demonstrate the proposed real-time updating of 

the nonlinear dynamic model of the tested building structure. A scaled El Centro 

earthquake input is applied to the shake table and the nonlinear model is updated in 

real-time using the UKF method. 

4. Comparison tests 

Another shake table test is conducted, with the focus not on the real-time updating, 

but rather on examining the updated model in the previous shake table test. A band-

limited white noise as input is applied to the shake table as base acceleration for the 

building, and both the resulting accelerations of the shake table and the building floor 

are recorded. Using the recorded base (shake table) acceleration, the floor accelera-
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tion generated from the updated model is calculated and compared with the measured 

floor acceleration. Finally, using the data from the continuous quasistatic test (sub-

case II), the force generated from the real-time updated model is compared with the 

measured force. 

7.2 Nonlinear Building Model for Updating 

For a typical shear building structure, the mass is considered to be lumped on building 

floor levels, the floor diaphragm is rigid and the columns are axially rigid. The elevation 

view of the tested building model is shown in Figure 7.1. The dimension of the steel col-

umns are 12in-by-1.25in-by-0.125in. The floor level is made with 3/8in thick steel, with 

mass measured as 11.35kg. An additional steel plate is attached to the floor to increase 

the total mass to 23.41 kg. This building structure model is considered as a typical shear 

building model in this experimental study. 

 

Figure 7.1 Elevation view of tested building model 

To model the nonlinear behavior of this shear building model,  the damaging behavior 

stated in section 2.2.4 needs to be captured, such as degradation of unloading/reloading 
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stiffness and strength. The difference between updating this model and the nonlinear FE 

model updating presented in section 2.2.4 is that the goal of updating is no longer to iden-

tify the reduction of instantaneous stiffness, but rather to focus on the entire hysteretic 

behavior that the structure exhibits during the damaging event. Therefore, the nonlinear 

Bouc-Wen model discussed in section 2.3.5 is applied. 

Denote the building displacement as 𝑥 𝑡 , the expression of the nonlinear building model 

is given as 

 𝑚𝑥  𝑡 + 𝑐𝑥  𝑡 + 𝑘𝑥 𝑡 + 𝛼𝑧 𝑡 = −𝑚𝑥 𝑔 𝑡  (7.1) 

and the modified Bouc-Wen equation is given in equation (2.128) and restated here 

 𝑧 =
𝑥 − 𝜈𝛽 ⋅ 𝛽 𝑥  𝑧 𝑧 

𝑛−1 − 𝜈𝛾 ⋅ 𝛾𝑥  𝑧 
𝑛

휂
 (7.2) 

where the coefficients 휂, 𝜈𝛽  and 𝜈𝛾  are defined by equations (2.122), (2.129), and (2.130), 

repectively. The output of the model is the absolute floor acceleration given as 

 𝑦 = 𝑥 + 𝑥 𝑔 = − 𝑐𝑥 + 𝑘𝑥 + 𝛼𝑧 𝑚  (7.3) 

The corresponding state vector augmented with parameters is defined as 

 

𝐱

=  𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥13 T  

=  𝑥 𝑥 𝑧 휀 𝛼 𝛽 𝛾 𝑐 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  
T
 

(7.4) 

Mass is considered as a known variable with value set as measured value 23.41 kg. 휀 is 

the dissipated energy of Bouc-Wen variable 𝑧, given in equation (2.119) 

 휀 𝑡𝑓 =  𝑧𝑥  d𝑡
𝑡𝑓

0

 (7.5) 
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The units of all the parameters are 𝛼 (N/m), 𝛽 (m
-n

), 𝛾 (m
-n

), 𝑐(Ns/m), 𝑘 (N/m), 𝑛, 𝛿휂 , 𝛿𝛽 , 

and 𝛿𝛾   are numeric constants (no units). The passivity of this nonlinear building model is 

discussed below. 

From equation (7.1), the governing equation of motion a normalized damping force gen-

erated in the system is given as 

 𝑓 = 𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 + 𝛼𝑧 (7.6) 

Similar to section 2.3.5, from equation (7.2), assume 휂 is positive, and 𝜈𝛾 ⋅  𝛾 ≤ 𝜈𝛽 ⋅ 𝛽, 

the following equation stands 

 

𝑧𝑧 =
𝑧𝑥 − 𝜈𝛽 ⋅ 𝛽 𝑥   𝑧 

𝑛+1 − 𝜈𝛾 ⋅ 𝛾𝑧𝑥  𝑧 
𝑛

휂
 

≤
𝑧𝑥 +  𝜈𝛾 ⋅  𝛾 − 𝜈𝛽 ⋅ 𝛽  𝑥   𝑧 

𝑛+1

휂
≤
𝑧𝑥 

휂
 

(7.7) 

and from equation (7.2) 

 𝑧𝑥 = 𝑧𝑢 =
𝑓 − 𝑚𝑥 − 𝑐𝑥 − 𝑘𝑥

α
u (7.8) 

using equations (7.7) and (7.8) 

 𝑓𝑢 ≥ 𝛼휂𝑧𝑧 + 𝑘𝑥𝑥 + c𝑥 2 + 𝑚𝑥 𝑥 ≥ 2𝑙1𝑧𝑧 + 2𝑙2𝑥𝑥 + 2𝑙3𝑥 𝑥 = 𝑉  (7.9) 

where 𝑙1 =  𝛼휂 2 > 0 , 𝑙2 = 𝑘 2 > 0 ,  𝑙3 = 𝑚 2 > 0 , and the storage function 

𝑉 = 𝑙1𝑧
2 + 𝑙2𝑥

2 + 𝑙3𝑥 
2. This shows that the nonlinear building model with constraint 

𝜈𝛾 ⋅  𝛾 ≤ 𝜈𝛽 ⋅ 𝛽 is passive with respect to the storage function 𝑉. 

7.3 Uniaxial Tension Test 

The steel columns shown in Figure 7.1 is designed to reach nonlinear regime in the dy-

namic shake table tests that will be conducted later. It is desirable to choose a steel type 



289 

 

with good ductility for the building columns so that the building can sustain the entire 

damaging tests. 

Two different types of steel are chosen for this test. One is hot rolled A1011 Grade 36 

Type 2 (match A36) steel, and the other is cold rolled 1018 steel. Three specimens are 

made for each type of steel. The test specimen is made with a reduced cross section in the 

middle as test region, which has width 1in and length 4in, as shown Figure 7.2.  The di-

mensions of each specimen are measured in three different locations (top, mid and bot-

tom, marked in red) and summarized in Table 7.1. 

 

Figure 7.2 Specimen for tension tests 

The tension test procedure complies with the ASTM E8/E8M-09 “Standard Test Methods 

for Tension Testing of Metallic Materials” (ASTM International, 2009). The INSTRON 

testing machine located at Bowen Lab is used for this uniaxial tension test. The model 

number of the machine is ISRS R 120 BTE, with a frame capacity at 534 KN. The resolu-

tion of the force measurement is 1lbf. The extensometer (ID: 2630-115/590) used to 

measure the strain has a gauge length 2 in (±0.5%) and resolution of 10
-3

% strain. The 

following control rule is set to the INSTRON testing machine: the rate of the measured 

stress is 10000 psi/min before the specimen begins to yield; after yielding, the speed of 

the testing machine is set to be 0.1 in/in of the length of the reduced section per min. The 

4 in 

top, mid and bottom r =1/8 in 

1 in 
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extensometer readings is used to set the strain rate. The elastic modulus is calculated by 

using the linear section of the stress-strain curve between 10000 psi (69 MPa) to 25000 

psi (172 MPa). The elastic modulus for each specimen is also summarized in Table 7.1.  

Table 7.1 Dimension and elastic modulus of each specimen 

Steel Type Hot rolled Cold rolled 

Specimen 1 2 3 1 2 3 

T
h

ic
k

n
es

s 

(i
n

) 

top 0.124 0.123 0.123 0.127 0.129 0.127 

mid 0.124 0.122 0.123 0.127 0.128 0.126 

bottom 0.124 0.123 0.123 0.127 0.130 0.127 

Average 0.124 0.123 0.123 0.127 0.129 0.127 

W
id

th
 (

in
) top 1.001 1.000 1.007 1.003 0.996 0.993 

mid 1.000 1.001 1.004 1.004 0.996 0.996 

bottom 1.003 1.003 1.006 1.006 1.001 0.998 

Average 1.001 1.001 1.006 1.004 0.998 0.996 

Length (in) 3.962 4.007 4.000 3.975 4.006 3.975 

Elastic Modulus (GPa) 190.8 187.8 187.8 177.6 195.5 203.9 

Average (GPa) 188.8 192.3 

 

Figure 7.3 Stress strain curves for tension test 
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The stress strain curve for each specimen is shown in Figure 7.3. The number 1 specimen 

of cold rolled steel presents a low Elastic modulus, which may be due to the eccentricity 

caused by the unflattness of the specimen. It also can be seen that, the cold rolled speci-

mens have a larger yielding strength and a slightly higher elastic modulus than the hot 

rolled ones. And it does not have a clear plateau after yielding. The hot rolled specimens 

have a noticeable plateau after yielding, and they experienced much larger deformation 

(about 0.4 strain) than the cold rolled ones (about 0.25 strain) before failure. Due to the 

better ductility, the hot rolled steel (A1011 Grade 36 Type 2) is selected over the cold 

rolled one (1018) to make the steel columns for the building model. A picture after the 

specimens fail is shown in Figure 7.4. 

 

Figure 7.4 After the specimens fail 

With the obtained elastic modulus, the critical load for each steel column is calculated 

using Euler‟s buckling formula 

 𝐹𝑐𝑟 =
𝜋2𝐸𝐼

 𝐾𝐿 2
 (7.10) 

where the area moment of inertia 𝐼 for the column is calculated to be 8.47 × 10−11m
4
, 

and the possible boundary conditions during the experiments that will be conducted is 

hot rolled 

cold rolled 
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either fixed-guided (𝐾 = 1) or hinged-guided (𝐾 = 2), and the resulting 𝐹𝑐𝑟  for each col-

umn are 424.7 N and 1698.7 N, respectively. In either case, the critical buckling load is 

much higher than the actual load (57.4 N) caused by the self-weight on each column. 

The natural frequency of the building model can also be calculated as 

 𝑓 =
1

2𝜋
 
𝑘

𝑚
 (7.11) 

the stiffness of each column is calculated as 𝑘 = 4 × 12𝐸𝐼 𝐿3 = 34242.8  N/m, and 

𝑓 = 6.1 Hz is calculated as an estimate of the natural frequency of the structure. 

7.4 Quasistatic Cyclic Test 

The quasistatic cyclic test is designed to measure the nonlinear hysteretic behavior of the 

steel building model. The experimental setup marked with dimensions is shown in Figure 

7.5, whereas the actual setup is shown in Figure 7.6. 

The displacement is measured by the internal LVDT in the actuator. The load cell and the 

actuator used here are described in section 6.2. As shown in Figure 7.5, when designing 

the loading connection between the load cell and the building model, a sliding (vertically 

guided) support is used to avoid imposing vertical load while the floor level is moving 

downward during the cyclic loading test. In Figure 7.6, this sliding support is realized by 

attaching a linear ball bearing 511H20A0 manufactured by THOMSON
TM

. The static 

load rating of this particular linear bearing is 31400 N (7059 lbf), and the dynamic load 

rating is 18143N (4078.7 lbf) for 50 km travel life, and 14400N (3237.2 lbf) for 100 km 

travel life (THOMSON, 2009). The maximum operating velocity and acceleration are 

5m/s and 100 m/s
2
. Using the calculated linear stiffness from section 7.3, when 3 in 

(0.0762 m) displacement is applied to the building structure, the required load is around 

2609.3 N (586.6 lbf), which is less than the load rating of the actuator (2.2 kips) as well 

as the loading ratings of the linear ball bearing.  
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Figure 7.5 D Experimental setup for quasistatic cyclic loading test 
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Figure 7.6 Photo of the experimental setup for quasistatic cyclic loading test 

A closer view of the linear ball bearing is shown in Figure 7.7. With maximum 3 in dis-

placement, considering the column length at 12 in, it is estimated that the maximum ver-

tical motion during the cyclic loading test is around 12 −  122 − 32 = 0.38 in (9.7 mm). 

Therefore, a linear bearing rail (T521H20A0 from THOMSON
TM

) is chosen with 4 in 

(100 mm) length, which will give, if the initial position is centered, about 15 mm leeway 

in either direction. This satisfies the need of this experiment. 

 

 

 

linear ball bearing 
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Figure 7.7 Linear ball bearing rail and carriage 

There are two loading criteria applied in the cyclic tests, subcases I (intermittent cyclic 

tests with hammer test) and subcase II (continuous cyclic test). In both cases, the data re-

cording frequency is 128 Hz, the loading rate is 0.05in/sec (1.27mm/sec) and a low-pass 

Butterworth filter with cut-off frequency at 32 Hz is applied to all the data acquisition 

channels.  

7.4.1 Subcase I - Intermittent Cyclic Tests with Hammer Tests 

In subcase I, there are 19 displacement cycles, with the peak amplitude of each cycle in-

creases from 0.1in (2.54mm) to 3in (76.2mm). After each cyclic test (after every two cyc-

lic tests when peak amplitude is less than 1in), the actuator is detached and a hammer test 

is performed on the building model to identify the natural frequency of the model (see 

Figure 7.8). A photo of the cyclic test in progress is shown in Figure 7.9. The combined 

displacement inputs are shown in Figure 7.10 by merging all the inputs of the 19 cyclic 

tests. The combined time history of the measured force and F-D curve are shown in Fig-

ure 7.11 and Figure 7.12, respectively.  The measured linear stiffness is 𝑘 = 33245.8 

N/m from case 0.3 in peak amplitude. The calculated natural frequency is 6.0 Hz. 

100mm 

71.5mm 

63mm 
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Figure 7.8 Hammer test in between two cyclic tests 

 

Figure 7.9 Cyclic test in progress 

 

accelerometer 
hammer 
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Figure 7.10 Subcase I: Displacement inputs for all the 19 cyclic tests 

 

Figure 7.11 Subcase I: Measured forces for all the 19 cyclic tests 
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Figure 7.12 Subcase I: Force vs. displacement curve for all the 19 cyclic tests 
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Figure 7.13 Subcase I: Separated force vs. displacement curve for each cyclic test (starting from 0.2in cycle) 
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The separated F-D curves of each cyclic test (except the one with 0.1in) are shown in 

Figure 7.13. The development of the hysteretic loop along with the cyclic peak amplitude 

can be observed in this figure. It also can be seen that a hysteresis loop already occurred 

at the cyclic test with 0.8 in peak amplitude. A closer view can be seen from Figure 7.14.  

 

Figure 7.14 Force vs. displacement curve for the cyclic test with peak amplitude 0.8in 

The hammer test is performed using the accelerometer (PCB, model no.370A02) to 

measure the vibration acceleration after the hammer impact (see Figure 7.8). Detailed de-

scription of the accelerometer can be found in section 7.5. The acceleration data is col-

lected by SigLab DAQ system with sampling frequencies 256 Hz. In the data processing, 

the number of FFT points are chosen as 4096, therefore the resolution in the frequency 

domain is 0.0625 Hz/sample. The natural frequencies are identified by simply “peak-

picking” of the power spectral density plot (see Figure 7.15). Both Hanning window and 

Rectangular window (no window) are applied to examine the leakage effect, but the iden-

tified natural frequencies do not show any noticeable differences. 
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(a) 

 

(b) 

Figure 7.15 Acceleration (a) and its PSD (b) of hammer test of case 0.8in 
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Note that one hammer test is performed after every cyclic test, except when the peak am-

plitude is less than 1 in, one hammer test is performed every two cyclic tests. The natural 

frequencies identified from the hammer tests are summarized in Figure 7.16. It is ob-

served that, the first drop of the natural frequency is right after the initial test, from 5.875 

Hz to 5.8125 Hz. However, from the cyclic test results in Figure 7.13, the structural be-

havior is expected to be linear at this stage. The cause of the drop of the natural frequency 

may be due to the slack of the connections. As shown in Figure 7.14, there is a noticable 

nonlinear hysteresis loop occurred at case with 0.8in peak displacement, but the identified 

natural frequency for this case is the same as the ones with linear behavior. If the occur-

rence of “nonlinear behavior” is used to characterize damage, then using the change of 

natural frequencies fails to detect the initialization of the damage. Even after the hysteret-

ic loops have been developed, the natural frequencies remain the same for 4 to 5 neigh-

boring cases. These observations are due to the resolution of the frequency domain is not 

high enough to detect the resulting change of natural frequency. However, compared with 

the statistics reviewed in section 1.3, the current frequency variation is comparable or 

even smaller than the one caused by temperature or wind effect. This result demonstrates 

that using the change of natural frequencies as a conclusive indicator for damage is still a 

challenging task under the environmental influences. 

Another observation has been made regarding the natural frequencies (5.8 Hz) is that the 

difference between the natural frequency obtained by hammer tests and the calculated 

ones obtained from measured elastic modulus (6.1 Hz in section 7.3) and linear stiffness 

(6.0 Hz in section 7.4.1). A possible reason is that the masses from the aluminum fitting 

(to connect the linear ball bearing with the building floor) and the rail of the linear bear-

ing were not considered. After considered their masses, the total mass amounts to 25.1 kg. 

Then the calculated natural frequencies are corrected to 5.88 Hz (using measured elastic 

modulus) and 5.79 Hz (using measured linear stiffness), and they are close to the natural 

frequencies obtained by the hammer test (5.875 Hz at the beginning and 5.8125 Hz dur-

ing the cycle with 0.3in peak displacement input).  
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7.4.2 Subcase II - Continuous Cyclic Test 

For the subcase II, a continuous cyclic displacement history with increasing peak ampli-

tude is applied to the building model without any interruption between cycles. The ampli-

tude peak values are 0.2, 0.5, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.25, 2.5, 2.75, and 3, 

all in inches. And for the cases in which the peak amplitude is larger than or equal to 1 in, 

two full cycles are imposed. Therefore, total 25 displacement cycles are imposed in this 

test. The time history of measured displacement and load are shown in Figure 7.17. The 

measured force-displacement curve matches well with the one obtained in Figure 7.12. 

The comparison of the F-D curves are shown in Figure 7.18. With the measured dis-

placement and force, similar to the section 6.4.2, an optimization scheme using con-

strained optimization method (MATHWORKS, 2010) is applied to update the nonlinear 

hysteretic model described in section 7.2. During the optimization, the constraints de-

scribed in section 7.2 are also imposed. 

Because the cyclic test is quasistatic, the terms 𝑚𝑥  and 𝑐𝑥  drop out. The objective of the 

updating is to minimize the following error 

 error =  𝐹measure −  𝑘𝑥 + 𝛼𝑧    (7.12) 

where 𝐹measure  is the measured force and 𝑥 is the measured displacement. The initial val-

ues of the optimization updating scheme is set as (the unit of each variable is described in 

section 7.2. 

 
𝐱𝟎 =  𝛼 𝛽 𝛾 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  

T
 

=  104 102 102 103 2 0 0 0 T  
(7.13) 

After the updating, the F-D curve generated by the resulting off-line updated model is 

compared with the measured F-D curve in Figure 7.19. 

The updated model parameters are given as 
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𝐱off−line =  𝛼 𝛽 𝛾 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  
T

=  2.79 × 104 7.10 × 102 7.10 × 102 2.26 × 103 T  

 1.95 1.72 31.36 −25.00 T 

(7.14) 

This model will be used later for comparison purposes in sections 7.5 and 7.6. 
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Figure 7.16 Identified natural frequencies in hammer tests 
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(a) 

 

(b) 

Figure 7.17 Subcase II: Time history of measured displacement and force of the cyclic 

test 
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Figure 7.18 Comparison of force vs. displacement curves of subcases I and II 

 

Figure 7.19 Comparison of force vs. displacement curves of measured force and force 

calculated from off-line updated model 
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7.5 Shake Table Test 

The shake table test is designed to explore the capabilities of real-time updating of the 

nonlinear dynamic model of the tested building structure. The one degree-of-freedom 

shake table (60in-by-60in) is driven by a dynamic rated double-ended actuator. The actu-

ator was manufactured by Shore Western. It is equipped with dual accumulators and its 

load capacity is 18 kips. A digital controller --- Schenck-Pegasus 5910 is used to control 

the shake table input. The experimental setup is shown in Figure 7.20. 

 

Figure 7.20 Experimental setup of building shake table test 

The measurements used in this experiments are the base and floor accelerations measured 

by two accelerometers (see Figure 7.20). The accelerometers are manufactured by PCB 

with model no.370A02. The measuring range of the accelerometers is ±20g, and the vol-

tage sensitivity is 0.1V/g. Resolution of the accelerometers is 3.2×10
-4

g. The equipment 

required for the real-time model updating is the same as the MR damper test described in 

section 6.2.3. A schematic chart for the equipment connection and signal flow is shown 

in Figure 7.21. The time duration of the shake table test is 60 s. The sampling frequency 

of the real-time updating is 1024 Hz. To reduce the noise level in the real-time updating, 

a low-pass IIR Butterworth filter with cut-off frequency at 30 Hz is applied on all col-

lected channels. With this filter applied, the noise levels in the measured base and floor 

accelerations are characterized by averaging 8 measurements taken throughout a day. Es-

timated values for both accelerations are chosen as COV 1×10
-4

 [m/s
2
]
2
. Similar to sec-

accelerometers 

x 
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tion 6.4.1, these estimated values are not the exact noise levels when the test is being 

conducted. A scaled El Centro earthquake input is applied to the shake table and the non-

linear model is updated in real-time using the UKF method. The maximum shake table 

acceleration achieved in the experiment is 2.8 g. The time history of the inter-story drift 

is obtained by integrating the obtained acceleration records (see Figure 7.22), with the 

maximum inter-story drift achieved at 0.04m (1.6in). A quick examination of natural fre-

quency using hammer testing shows that, with the frequency resolution 0.0625 

Hz/sample, the natural frequency of the building is 5.875 Hz before the shake table test, 

and 5.6875 Hz after the test (the fitting is attached during the hammer test). This result 

matches well with the natural frequency results obtained in Figure 7.16. 

The following vector is used for the initial values of the UKF 

 
𝐱𝟎 =  𝛼 𝛽 𝛾 𝑐 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  

T
 

=  104 2 × 103 2 × 103 102 103 2 10 100 −100 T  
(7.15) 

 

Figure 7.21 Schematic flow chart of shake table test 
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Figure 7.22 Time history of inter-story drift under El Centro earthquake 

The average and maximum TET in this case are 2.76×10
-4

 s and 3.06×10
-4

 s, which satis-

fy the real-time computing time step constraint 1/1024 = 9.77×10
-4

 s. The time history of 

the real-time updating results are shown in Figure 7.23 for each parameter. From Figure 

7.23, it is seen that, all the parameters have converged after about 35 s. Some of the pa-

rameters converge faster, such as 𝛽, 𝛾, 𝑘 and 𝑛, while some of them take longer time, 

such as 𝛼, 𝛿𝛽  and 𝛿𝛾 . The updated model parameters are 

 
𝐱𝐫𝐭 =  𝛼 𝛽 𝛾 𝑐 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  

T
 

=  2.67 × 104 223.58 24.98 48.73 898.31 1.65 0.00 29.94 95.17 T  
(7.16) 

After the updating, the change of parameter 𝛼 is about 160%, and even larger for parame-

ter 𝛿𝛾  (about 195%). Because the parameter 𝛿휂  controls the degradation of the stiffness 

(see section 2.3.5), the result of 𝛿휂  close to zero implies that the stiffness degration effect 

is not significant. After the 60 seconds shake table test, the calculated floor acceleration 

of the updated model, together with the ones obtained from the off-line updated static 

model [see equation (7.17)] and the initial model [see equation (7.15)], are compared 

with the measured floor acceleration. The “converge” curve that is calculated using the 

parameter updating history is also included. The off-line updated model is obtained from 

quasistatic cyclic test, therefore the parameter 𝑐 was not included in the updating. How-

ever, the parameter 𝑐 is required to facilitate the comparison study. Assuming 5% damp-

ing ratio, with the linear stiffness obtained in section 7.3, an approximated 𝑐 value is cal-

cuated to be 80. Then the off-line updated model parameters are 

0 10 20 30 40 50 60
-0.05

0

0.05

Time (Sec)

D
is

p
 (

m
)

0 2 4 6 8 10
-100

-80

-60

-40

-20

Frequency (Hz)

S
(f

) 
[d

B
(P

o
w

e
r)

/H
z
]



311 

 

 

𝐱off−line =  𝛼 𝛽 𝛾 𝑐 𝑘 𝑛 𝛿휂 𝛿𝛽 𝛿𝛾  
T

=  2.79 × 104 7.10 × 102 7.10 × 102 80 2.26 × 103 T  

 1.95 1.72 31.36 −25.00 T 

(7.17) 

The comparison results are shown in Figure 7.24. The zoom-in view of the beginning 

stage shows that both the real-time and off-line updated model can fit well with the 

measured response, but the “converge” curve and “initial” curve do not match with the 

measured acceleration. A zoom-in plot is also provided for a later stage when all the pa-

rameters have converged to stable values (about 35s according to Figure 7.23). It shows 

that the  “converge” curve converges to the real-time updating curve and matches well 

with the measured data, whereas  the “initial” curve still has noticeable discrepancy com-

pared with the measurement (around ±10m/s
2
). The zoom-in view for the acceleration 

comparisons are also shown in Figure 7.25. In Figure 7.26, the passivity constraint ap-

plied in section 7.2, i.e. 𝜈𝛾 ⋅  𝛾 ≤ 𝜈𝛽 ⋅ 𝛽 is illustrated in terms of the value of  𝜈𝛽 ⋅ 𝛽 −

𝜈𝛾 ⋅  𝛾 ≥ 0. Figure 7.26 shows, for both real-time and off-line updated models, the pas-

sivity constraint is satisfied throughout the entire experiment. Finally, the three error in-

dices used in section 6.4 are also applied herein [equations (6.26), (6.27) and (6.28)]. The 

value of the error indices are summarized in Table 7.2, and compared in Figure 7.34 in 

section 7.6.2. 

7.6 Comparison Tests (Random, Static) 

The comparison test is designed to use a new (other than the data set that the real-time 

updating is used) set of experimental data to examine the performance of the updated 

models. The comparison test contains two experiment cases: a shake table test under ran-

dom input, and the cyclic test described in section 7.4.2.  

7.6.1 Shake Table Test under Random Input 

The random input to the shake table is a band-limited white noise with a frequency band 

0-5 Hz. During the test, the maximum shake table acceleration achieved is 2.92 g, with 

the maximum inter-story drift 0.0545m (2.15in) as shown in Figure 7.27. Using the 
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measured base acceleration, the floor acceleration generated from the following models 

are compared: real-time updated model [equation (7.16)], off-line updated model [equa-

tion (7.17)], initial model [equation (7.15)]. The “converge” curve is also included. The 

comparison results are shown Figure 7.28. The similar results as section 7.5 are observed. 

The initial model generates large error throughout the entire time history. The “converge” 

curve shows different behavior than the real-time model, but converges to it after about 

35 seconds, which is also the same as in Figure 7.24. In general, the floor accelerations 

obtained from both the real-time and off-line updated models matches well with the 

measured floor acceleration. However, there is a slight underestimation (about 4 m/s
2
)  of 

the real-time updated model peak response comparing to the off-line updated model. 
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Figure 7.23 Updating history of each parameter for the shake table test (cont.) 
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Figure 7.23 Updating history of each parameter for the shake table test (cont.) 
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Figure 7.23 Updating history of each parameter for the shake table test 
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Figure 7.24 Comparison of floor acceleration vs. time of shake table test under El Centro earthquake
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Figure 7.25 Zoom-in view of comparison of floor acceleration vs. time of shake table test under El Centro earthquake 

(legend in the first figure) (cont.) 
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Figure 7.25 Zoom-in view of comparison of floor acceleration vs. time of shake table test under El Centro earthquake 

(legend in the first figure) (cont.) 
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Figure 7.25 Zoom-in view of comparison of floor acceleration vs. time of shake table test under El Centro earthquake 

(legend in the first figure) (cont.) 
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Figure 7.25 Zoom-in view of comparison of floor acceleration vs. time of shake table test under El Centro earthquake 

(legend in the first figure) (cont.) 
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Figure 7.25 Zoom-in view of comparison of floor acceleration vs. time of shake table test under El Centro earthquake 

(legend in the first figure) (cont.) 
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Figure 7.25 Zoom-in view of comparison of floor acceleration vs. time of shake table test under El Centro earthquake 

(legend in the first figure) 
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Figure 7.26 Passivity constraint during the shake table test under El Centro earthquake 

 

Figure 7.27 Time history of inter-story drift under random acceleration 
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Figure 7.28 Comparison of floor acceleration vs. time of shake table test under random input 
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Figure 7.29 Passivity constraint during the shake table test under random input 

From Figure 7.29, it is shown that the passivity constraint is also satisfied for both real-

time and off-line updated models. The values of the error indices are summarized in Ta-

ble 7.2, and compared in Figure 7.34 in section 7.6.2. It is shown that the values of the 

error indices are larger than the case in section 7.5, but the relative error 𝐉𝟑 is still less 

than 0.15. 

7.6.2 Cyclic Test 

In this section, the experimental data recorded from section 7.4.2 is used. Unlike the 

comparison studies in sections 7.5 and 7.6.1, in this case, using measured cyclic dis-

placement input, the reaction force instead of floor acceleration generated from the fol-

lowing models are compared: real-time updated model [equation (7.16)], off-line updated 

model [equation (7.17)], initial model [equation (7.15)]. Because the maximum inter-

story drift is 0.04m (1.6in) in the real-time model updating (see section 7.5), the meas-

ured displacement applied to each model is also within the same range. The comparison 

of the force vs. displacement and force vs. time relationships are shown in Figure 7.30 

and Figure 7.31. It can be seen that, in general, both of the real-time and off-line updated 

model can capture the nonlinear hysteretic behavior very well. It is noted that there is a 
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slight overestimate (about 47 N) of the peak reaction force for real-time updated model 

(see Figure 7.32). 

 

Figure 7.30 Comparison of reaction force vs. displacement of cyclic test 

 

Figure 7.31 Comparison of reaction force vs. time of cyclic test 

-0.04 -0.02 0 0.02 0.04

-800

-600

-400

-200

0

200

400

600

800

Disp (m)

F
o
rc

e
 (

N
)

 

 

Measured

rt

off-line

ini

0 200 400 600 800 1000 1200

-800

-600

-400

-200

0

200

400

600

800

Time (sec)

F
o
rc

e
 (

N
)

 

 
Measured rt off-line ini



327 

 

 

Figure 7.32 Zoom-in view of the reaction force vs. time of cyclic test 

 

Figure 7.33 Passivity constraint during the cyclic test 
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error indices are also summarized in Table 7.2. Since the physical quantities chosen for 

comparison are different, only the relative error index 𝐉𝟑 is selected to be plotted in Fig-

ure 7.34 for comparison. 

Table 7.2 Error indices for all the comparison tests 

  El Centro (acc-m/s2) random  (acc-m/s2) cyclic  (force-N) 

error index rt off-line ini rt off-line ini rt off-line ini 

J1 2.16 2.69 10.34 3.67 6.24 14.88 40.77 35.73 328.97 

J2 0.21 0.26 0.99 0.23 0.39 0.92 0.09 0.08 0.73 

J3 0.06 0.07 0.28 0.10 0.18 0.42 0.05 0.05 0.43 

From the values of the error indices in Table 7.2, it is clear that both real-time and off-

line updated models show great improvement over the corresponding initial models. The 

performance of the real-time updated model is even better than the off-line updated mod-

el in most of the cases, except for the cyclic test which is an optimal case for the off-line 

updated model. 

 

Figure 7.34 𝐉𝟑 for all comparison tests  
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7.7 Summary 

This chapter presents the details of the experimental study for the scaled steel shear build-

ing structure. This study begins with identifying the mechanical properties (elastic mod-

ulus and ductility) of the material, and then using static cyclic test to measure the nonli-

near hysteresis behavior, finally using the shake table test to conduct the real-time model 

updating for the shear building structure. 

It is shown that the proposed modified Bouc-Wen model can be successfully applied in 

the real-time updating for the tested structure. The relative error indices 𝐉𝟑 for real-time 

updated model in the three difference cases are all less than 10%. The comparison studies 

of shake table test with random input and cyclic test demonstrate that, the real-time up-

dated model can achieve similar performance as the off-line updated model, and in some 

cases even better (see Figure 7.34). However, there are again multiple updated models 

obtained with different methods. 

  



330 

 

CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

This study of model updating techniques for structural dynamic models is motivated by 

its capability to efficiently assess structural performance and its associated potential eco-

nomic and social impact. In this dissertation, three different structural dynamic model 

updating techniques have been developed and examined using numerical simulations and 

experiments, namely the linear FE model updating, nonlinear FE model updating and 

nonlinear real-time model updating. The research findings and observations for each 

model updating technique are summarized herein. 

8.1 Summary of Research Findings 

For linear FE model updating, a basic assumption is that the structure behaves linearly 

and the damage is characterized as the reduction of the linear stiffness. With the modal 

information provided by modal identification procedure, the stiffness of the elements of 

the structural model can be updated using a predefined objective function. One of the 

technical challenges is to select a proper objective function. In this dissertation, the modal 

flexibility matrix is utilized, which has the advantage of preserving the modal informa-

tion with the first few  modes.  

Another challenge in linear FE model updating lies in the discrepancies between the 

number of the degree-of-freedoms (DOFs) of the structural model and the number of 

DOFs measured by the sensors. In general, the number of sensors deployed on the struc-

ture is limited by the implementation cost. Therefore the number of DOFs in the model to 

be updated is usually larger than the number of sensors, and the size of the measured 
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modal flexibility matrix (equal to the number of sensors) does not match the size of the 

one obtained from the model. A modal expansion technique (System Equivalent Reduc-

tion Expansion Process, SEREP) is hence used in this dissertation to resolve this issue.  

After the objective function is selected, to improve the condition of the resulting updating 

problem, a subset selection technique is applied to handle the parameters with high corre-

lations. This step is essential to update the model with refined mesh and/or defined in 

high dimensions, for instance, a 2D plate. 

One of the contributions made towards the linear FE model updating in this dissertation is 

that the analytical form of the gradient and Hessian of the objective function is derived 

(see section 2.1.6). With the analytical formulation, the optimization algorithm used in 

the updating process does not required one to form the structural stiffness matrix at every 

iteration, which results in a great improvement on the computational efficiency. In 

CHAPTER 3, these improvements mentioned above can be observed in the numerical 

study conducted for the linear FE model updating on 1D and 2D structural models. 

The limitations of the linear FE model updating are related to the assumption of the tech-

nique. The damage process of the structure is usually a nonlinear process, the assumption 

of a linear model implies that the application of the technique is limited to pre or post-

disaster assessment, when the behavior of the structure is, within certain operating range 

(ambient vibration usually has amplitude RMS at the level of 10
-2

 ~ 10
-1

 m/s
2
), linear. 

Also, as with any other large-scale optimization problem, even the current proposed tech-

nique equipped with SEREP and subset selection, the condition of the updating process 

directly depends on the number of unknowns (damage parameters) to be updated versus 

the number of sensors (available measurements). This limitation suggests that, a highly 

refined structural model may not be the best choice for such updating. It is up to the na-

ture of the problem to determine the scale of the related updating process. 

The nonlinear FE model updating technique developed in this dissertation may be consi-

dered as an extension to the linear FE model updating. The purpose is to take into ac-

count nonlinearity of the structure model, so that the updated model can be used not only 



332 

 

for damage localization and quantification, but also for damage prognosis. However, this 

does not imply that the information used for updating is provided by response in nonli-

near regime. In fact, the key of the proposed nonlinear FE model updating is that, we as-

sume the nonlinear model is characterized by certain variable (say maximum strain expe-

rienced) that can be related to the instantaneous zero-load crossing stiffness. By updating 

the instantaneous zero-load crossing stiffness, the nonlinear hysteretic model can then be 

updated. Therefore, the damage indicator again is chosen as the reduction of linear in-

stantaneous stiffness. 

The nonlinear FE model updating technique, along with the nonlinear RC model used in 

the study, have been successfully applied in a model updating problem for a RC shear 

wall under earthquake inputs (in CHAPTER 4). The initial model is built according to the 

shear wall tested by (Pilakoutas & Elnashai, 1995). After the nonlinear model updating, 

one can not only identify the damage locations and severities but also use the updated 

nonlinear model for prognosis. 

In the development of the nonlinear FE model updating technique, a MATLAB based 

simulation package is developed to perform the nonlinear FE analysis, as well as to im-

plement the nonlinear model updating technique developed. In the current development 

phase of this package, only the necessary functionalities are implemented (see section 

4.1.2). However, the intent of this simulation package is to build a framework for con-

ducting similar updating analyses. Necessary interfaces have been developed so that if a 

new component (material model or element type) is developed with compatible interface 

by a user, it can be seamlessly integrated to this simulation package. 

The proposed nonlinear FE model updating technique is improved from the linear FE 

model updating due to the introduction of nonlinearity into the structural model. However, 

it also shares the similar limitation as the linear FE model updating. The application of 

the technique is again limited to pre or post-disaster assessment since the information it 

used comes from the low level (near zero-load crossing) ambient vibration. Another limi-

tation is that the nonlinear model needs to be related to the instantaneous stiffness at the 

zero-load crossing point, which is the damage parameter defined in the technique. This 
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fact implies that, complex behavior such as strength degradation, pinching, and bond-slip, 

etc., which cannot be directly linked to the zero-load crossing stiffness, will not be consi-

dered in this model updating technique. 

While most vibration-based SHM techniques rely on modal identification results, the 

study in this dissertation has explored the capability of nonlinear observers in application 

of real-time updating of the nonlinear hysteretic models. The nonlinear observers can 

provide real-time assessment results, and necessary state feedback to the possible struc-

tural control applications. The application of such observers is suitable for updating the 

structural system under extreme loading conditions. This approach is opposite to the li-

near and nonlinear FE model updating techniques proposed. Another difference is that 

there is no explicit damage indicator in the real-time updating process. However, certain 

state variables, such as dissipated energy of hysteretic force 𝐸 defined in equation (2.118) 

or 휀 defined in equation (2.119), can be considered as an indicator of aging. 

In this dissertation, three different nonlinear observers have been considered as possible 

real-time updating scheme, extended Kalman filter (EKF), unscented Kalman filter (UKF) 

and high-gain (HG) filter. Both the EKF (section 2.3.2) and UKF (section 2.3.3) have 

process and measurement noises built-into the formulation. Even though HG filter does 

not consider noise in its formulation, but with medium amount of noise (5% RMS with 

respect to the measurement, same after), it still can track the states with uncertain initial 

information. In the numerical study conducted in CHAPTER 5 using original Bouc-Wen 

model, it is observed that, the EKF and UKF can achieve similar performance when the 

nonlinear updating problem is not complex (subcase I). Once the problem (subcase II) 

becomes highly nonlinear or complex, the UKF clearly outperforms the EKF. The UKF 

can give reasonable updating results even with 10% RMS noise level in this case (see 

Table 5.2, the relative error of the UKF updated model is below 25% whereas the one of 

the EKF updated model is 384%). For this reason, UKF is selected as the candidate for 

further studies in this dissertation. For more complex models, the numerical studies show 

that, the performance of UKF is greatly influenced by the noise level in the system. For 

the updating of a phenomenological MR damper model, with 5% RMS noise level, 62% 
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error in updating parameter 𝜷 is observed; for the updating of the nonlinear building 

model, with 10% RMS noise level, there is 86% error in updating parameter δγ . This 

conclusion has promoted the use of  filters (see section 2.4.3) in the later experimental 

study of real-time updating. 

The experimental studies conducted to examine the performance of the real-time updat-

ing technique is the first time such nonlinear model updating techniques have been rea-

lized in real-time. In the MR damper real-time model updating experiments (see CHAP-

TER 6), the real-time updating capability has been achieved with sampling frequency of 

2048 Hz (corresponding to 0.49 ms time step). The maximum task execution time (TET) 

throughout the entire experimental study is  0.47 ms, which satisfies the time constraints. 

The performance of the updated models is evaluated by comparing the resulting force and 

current with the measured ones. A set of off-line updated models are also obtained by ap-

plying MATLAB optimization scheme on the recorded data. It is shown that, the perfor-

mances of the real-time and off-line updated models are comparable in general, but the 

performance of off-line updated models are better in the constant voltage cases since they 

are optimal in these situations (see Figure 6.31). The values of relative error index 𝐉𝟑 are 

less than 0.1 for real-time updated models in all the cases with random current input (see 

Figure 6.63). A set of comparison tests is designed with new set of input displacement 

and voltage to further examine the performance of the updated models. In the comparison 

test, for the case 0.5in band-pass random voltage input, the real-time updated models can 

outperform the off-line updated models (see Table 6.9). And the error index 𝐉𝟑 is around 

0.07 for all real-time updated models. 

The real-time model updating experiment for nonlinear shear building structure is con-

ducted to examine the performance of UKF in updating structural hysteresis. Similar to 

the MR damper case, an off-line model is also obtained for comparison purposes. In the 

real-time updating experiment, the maximum TET is 0.31 ms, which satisfies the real-

time computing time step constraint 1/1024 = 0.98 ms. In the comparison tests, the real-

time updated model outperforms the off-line updated model in all cases except the cyclic 

test case, for which the off-line model is optimal (see Table 7.2), with the error index 𝐉𝟑 
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less than 0.1. However, there is a slight underestimate (about 4 m/s
2
) of the peak accele-

ration in the shake table test with random input (see Figure 7.28) and a small overesti-

mate (about 47 N) of the peak reaction force in the cyclic test as well (see Figure 7.32). 

Other contributions made in this dissertation are the inclusion of the power supply unit 

into the MR damping system and the development of the nonlinear building model using 

modified Bouc-Wen model (see section 2.3.5). With a simple first order system (see sec-

tion 6.3.3), the power supply unit can be considered as part of the damping system, and 

would be updated with the damper model at the same time. Such a model can greatly fa-

cilitate structural control applications with varying voltage inputs. The proposed nonli-

near building model is a modified version of Bouc-Wen model (see section 2.3.5). The 

efficacy of this model has been proven in both the off-line and real-time model updating 

for the tested shear building structure. 

Although the selection of initial parameters does have an impact on the final results of the 

model updating, the UKF method used in the real-time model updating applications ap-

pears to be robust to it. This observation is based on the fact that the same initial values 

are applied for all the MR damper real-time updating tests performed under different con-

stant voltage levels. Furthermore, these selected initial values are not close to the final 

updating results. In the real-time updating tests for MR damper under random voltage, 

the change of the value of 𝛼𝑎  is about 30%, and 200% for 𝑓0. From the results of the final 

comparison tests, the values of the relative error index 𝐉𝟑 for the initial models are around 

0.2, whereas the real-time updated models can reduce it to 0.06-0.07. In the real-time up-

dating test (shake table test) for nonlinear building structure, the change of parameter 𝛼 is 

about 160%, and even larger for parameter 𝛿𝛾  (about 195%). From the results of the final 

comparison tests, the value of the relative error index 𝐉𝟑 has been improved from about 

0.4 to 0.05 by the real-time updating. 

As mentioned earlier, the performance of the UKF in real-time updating is limited by the 

noise level in the system. Even with the digital filter applied to reduce the noise intensity, 

measurements as load and current still have a noticeable amount of noise. Also with the 
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consideration that aggressive filtering will introduce time distortion of the signal, its 

noise reduction effect is still limited. 

Another limitation of the UKF updating is that, the implemented nonlinear model should 

closely represent the physical system. If the unmodeled dynamics are significant in the 

system, for instance, using simple Bouc-Wen model for tested MR damper (Figure 6.20 

in section 6.4.2), the UKF cannot provide good updated results in this case. Conducting 

some preliminary or trial tests to demine the type of nonlinearity to be updated is useful 

for subsequent real-time updating. 

8.2 Future Work 

Based on the lessons learned and observations made in the course of preparing this dis-

sertation, the following topics are recommended for future work: 

 In both linear and nonlinear FE model updating techniques proposed in this dis-

sertation, no environmental influence is considered. Considering the variation of 

natural frequencies caused by temperature influence (see section 1.3), it is of prac-

tical interest to examine the possibility of combining temperature effect into the 

FE model updating process. 

 Since there are no commercial software packages available that can perform both 

the nonlinear analysis and the FE model updating, the development of the nonli-

near model updating simulation package should continue and it should be made 

available to public. 

 In both nonlinear real-time updating experiments for the MR damper and nonli-

near shear building structure, multiple updated models have been found using dif-

ferent methods under different conditions. And for some of the MR damper test 

cases, there are actually 3 parameters have been fixed in the updating. These are 

the signs that the nonlinear model used to describe the physical system is overpa-

rameterized. It would be interesting to analyze the data again with other nonlinear 

models for MR dampers to consider more modeling options. Moreover, as men-
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tioned in section 2.3.5, the pinching behavior is also possible to be considered in 

the formulation, which is a good extension to the current proposed nonlinear hys-

teresis model. 

 The UKF updating scheme developed in this dissertation assumes that the model 

parameters are constant during the updating. This assumption does not always 

hold in real world applications. For instance, one observation made during the 

MR damper tests is, the temperature rise during the experiment and in turn creates 

small but noticeable influence on the behavior of the damper (see Figure 6.23 and 

Figure 6.24). If certain adaptive techniques can be introduced into the proposed 

real-time updating schemes, then it can be applied to cases in which the model pa-

rameters may vary during the updating. 

 The proposed real-time updating technique does not require expensive computa-

tional effort, and it only requires memory from one prior time step. This feature is 

suitable for developing a corresponding embedded system, or application with 

wireless sensor network (WSN). Interdisciplinary research in this direction should 

be explored.  

 The state observer is used in control system to provide state feedback to the con-

troller. With the current implementation of the UKF in nonlinear real-time updat-

ing, if a nonlinear controller (even with full state feedback) can also be designed, 

then the nonlinear control of structure can be realized. 

 During a real-time experiment, the updated parameters are essentially random va-

riables with corresponding statistical information. It is possible to develop a prob-

abilistic measure for the updated parameters as an indicator to the accuracy of the 

updated parameters and eventually of the model as well. 

 With the appealing features of updating the system models in real-time for both 

damping system and structural system, it is possible to combine the two ap-

proaches and perform a real-time updating for structure with damping system in-

stalled. The updated model can be directly applied in nonlinear structural control 

application. 
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 There are full scale MR damping system (including power supply unit) and nonli-

near structural test data available. It is beneficial to use these available data to ex-

amine the possibility of large scale applications of the proposed real-time updat-

ing technique. 

  



 

 

LIST OF REFERENCES 



339 

 

LIST OF REFERENCES 

ABAQUS 6.6. Analysis user’s manual and ABAQUS scripting user’s manual. Providence, 

R.I.: ABAQUS, Inc. Hibbitt, Karlsson, Sorensen. 

Aktan, A. E., Lee, K. L., Chuntavan, C., & Aksel, T. (1994). Modal Testing for Structural 

Identification and Condition Assessment of Constructed Facilities. Proceedings of 12th 

International Modal Analysis Conference, (pp. 462–468). 

Allemang, R. J., & Brown, D. L. (1982). A Correlation Coefficient for Modal Vector 

Analysis. Proceedings of 1st Int. Modal Analysis Conference, (pp. 110–116). 

Andersen, P. (1997). Ph.D. dissertation: Identification of Civil Engineering Structures 

using ARMA Models. Aalborg, Denmark: Univ. of Aalborg. 

ASCE. (2005). 2005 Report Card for America's Infrastructure. Reston, VA: American 

Scoviety of Civil Engineers. 

ASCE. (March 25, 2009). 2009 Report Card for America's Infrastructure. Reston, 

Virginia: American Society of Civil Engineers (ASCE). 

ASCE Committee 447. (1994). State-of-the-art Report on Finite Element Analysis of 

Reinforced Concrete. ASCE Committee 447 on Finite Element Analysis of Reinforced 

Concrete. 

ASTM International. (2009). E8/E8M - 09:Standard Test Methods for Tension Testing of 

Metallic Materials. West Conshohocken, PA. 



340 

 

Ayoub, A., & Filippou, F. C. (1998). Nonlinear Finite-Element Analysis of RC Shear 

Panels and Walls. Journal of Structural Engineering , 124 (3), 298-308. 

Baber, T. T., & Noori, M. N. (1986). Modeling General Hysteresis Behavior and Random 

Vibration Application. Journal of Vibration, Acoustics, Stress, and Reliability in Design , 

108, 411-420. 

Baber, T. T., & Noori, M. N. (1985). Random Vibration of Degrading,Pinching Systems. 

Journal of Engineering Mechanics , 111 (8), 1010-1026. 

Baber, T. T., & Wen, Y. K. (1981). Random Vibration of Hysteretic, Degrading Systems. 

Journal of the Engineering Mechanics Division , 107 (6), 1069-1087. 

Bass, B. J., & Christenson, R. E. (2007). System Identification of a 200 kN Magneto-

Rheological Fluid Damper for Structural Control in Large-Scale Smart Structures. 

Proceedings of the 2007 American Control Conference, (pp. 2690-2695). New York City, 

USA. 

Bernal, D. (2000). Extracting Flexibility Matrices from State-space Realizations. 

Proceedings of COST F3 Conference on System Identification and Structural Health 

Monitoring, (pp. 127-135). 

Bernal, D., & Beck, J. L. (2004). Special Issue on Phase I of the IASC-ASCE Structural 

Health Monitoring Benchmark (Vol. 130 (1)). (J. L. Beck, Ed.) 

Bouc, R. (1967). Forced Vibration of A Mechanical System with Hysteresis. Proceedings 

of 4th Conference on Nonlinear Oscillations. Prague, Czechoslovakia. 

Brincker, R., Zhang, L., & Andersen, P. (2001). Modal Identification of Output-only 

Systems using Frequency Domain Decomposition. Smart Materials and Structures , 10 

(3), 441-445. 

Brown, J., & Kunnath, S. K. (2004). Low-Cycle Fatigue Failure of Reinforcing Steel 

Bars. ACI Material Journal , 101 (6), 457-466. 



341 

 

Browning, J., Li, Y. R., Lynn, A., & Moehle, J. P. (2000). Performance Assessment for a 

Reinforced Concrete Frame Building. Earthquake Spectra , 16 (3), 541-555. 

Caicedo, J. M., Dyke, S. J., & Johnson, E. A. (2004). Natural Excitation Technique and 

Eigensystem Realization Algorithm for Phase I of the IASC-ASCE Benchmark Problem: 

Simulated Data. Journal of Engineering Mechanics , 130 (1), 49-60. 

Caicedo, J., & Dyke, S. J. (2002). Solution for the Second Phase of the Analytical SHM 

Benchmark Problem. Proceedings of 15th ASCE Engineering Mechanics Conference. 

Columbia University, New York, NY. 

California Geological Survey. (1972). California Geological Survey - About CSMIP. 

Retrieved 2011, from California Geological Survey: 

http://www.conservation.ca.gov/cgs/smip/Pages/about.aspx 

Catbas, F. N., Kijewski-Correa, T., & Aktan, A. E. (2011). Structural Identification (St-Id) 

of Constructed Facilities: Approaches, Methods and Technologies for Effective Practice 

of St‐Id. American Society of Civil Engineers (ASCE) - Structural Engineering Institute 

(SEI). 

Cawley, P., & Adams, R. D. (1979). The Locations of Defects in Structures from 

Measurements of Natural Frequencies. Journal of Strain Analysis , 14 (2), 49-57. 

CBO. (Nov. 2010). A CBO Study: Public Spending On Transportation and Water 

Infrastructure. Congress of The United States Congressional Budget Office. 

Chang, G. A., & Mander, J. B. (1994). Seismic Energy Based Fatigue Damage Analysis 

of Bridge Columns: Part I – Evaluation of Seismic Capacity. Buffalo: Technical Report 

NCEER-94-0006. 

Chatz, E. N., Smyth, A. W., & Masri, S. F. (2010). Experimental Application of On-line 

Parametric Identification for Nonlinear Hysteretic Systems with Model Uncertainty. 

Structural Safety , 32 (5), 326-337. 



342 

 

Chatzi, E. N., & Smyth, A. W. (2008). The Unscented Kalman Filter and Particle Filter 

Methods for Nonlinear Structural System Identification with Non-collocated 

Heterogeneous Sensing. Structural Control and Health Monitoring , 16 (1), 99-123. 

Choi, S., Lee, S., & Park, Y. (2001). A Hysteresis Model for the Field-dependent 

Damping Force of a Magnetorheological Damper. Journal of Sound and Vibration , 245 

(2), 375-383. 

Cornwell, P., Doebling, S., & Farrar, C. (1997). Application of the strain energy damage 

detection method to plate like structures. Proceedings of the 15th International Modal 

Analysis Conference, (pp. 1312-1318). 

Dahl, P. (1968). A solid friction model. The Aerospace Corporation, El Segundo, CA. 

Dennis, J. E., & Schnabel, R. B. (1996). Numerical Methods for Unconstrained 

Optimization and Nonlinear Equations. SIAM Publications . 

Doebling, S. W., Farrar, C. R., & Prime, M. B. (1998). A summary review of vibration-

based damage identification methods. The Shock and vibration digest , 30 (2), 91-105. 

Dyke, S. J. (1996). PhD Dissertation Acceleration Feedback Control Strategies for 

Active and Semi-active Control Systems: Modeling, Algorithm Development, and 

Experimental Verification. Department of Civil Engineering and Geological Sciences, 

Notre Dame University. 

Dyke, S. J., Stojadinovic, B., Arduino, P., Garlock, M., Luco, N., Ramirez, J. A., et al. 

(2010). 2020 Vision for Earthquake Engineering Research: Report on an OpenSpace 

Technology Workshop on the Future of Earthquake Engineering. St. Louis, Missouri. 

Efroymson, M. (1960). Multiple Regression Analysis . In A. a. Ralston, Mathematical 

Methods for Digital Computers, Vol. 1 (pp. 191-203). New York: Wiley. 

Farrar, C. R., & Lieven, N. A. (2007). Damage Prognosis: the Future of Structural Health 

Monitoring. Philosophical Transactions of the Royal Society A , 365, 623-632. 



343 

 

Farrar, C., Sohn, H., Hemez, F., Anderson, M., Bement, M., Cornwell, P., et al. (July, 

2003). Damage Prognosis: Current Status and Future Needs. Los Alamos National 

Laboratory Report, LA-14051-MS. 

Foliente, G. C. (1995). Hysteretic Modeling of Wood Joints and Structural Systems. 

ASCE Journal of Structural Engineering , 121 (1), 1013-1022. 

Fox, J. (1997). Applied Regression Analysis, Linear Models, and Related Methods. Sage 

Publications Inc. 

Fox, R. L., & Kapoor, M. P. (1968). Rate of Change of Eigenvalues and Eigenvectors. 

AIAA Journal , 6 (12), 2426-2429. 

Friswell, M. I., & Mottershead, J. E. (1995). Finite Element Model Updating in 

Structural Dynamics. Kluwer Academic Publishers. 

Friswell, M., Penny, J., & Garvey, S. (1997). Parameter Subset Selection in Damage 

Location. Inverse Problems in Engineering , 5 (3), 189-215. 

Fritzen, C.-P., & Bohle, K. (2003). Global Damage Identification of the 'STEELQUAKE' 

Structure Using Modal Data. Mechanical Systems and Signal Processing , 17 (1), 111-

117. 

Garibaldi, L., Marchesiello, S., & Bonisoli, E. (2003). Identification and Up-dating Over 

the Z24 Benchmark. Mechanical Systems and Signal Processing , 17 (1), 153-161. 

Garrido, R., Rivero-Angeles, F. J., Martinez-Guerra, R., Gomez-Gonzalez, B., & 

Martinez-Garcia, J. (2004). Nonlinear Restoring Force Estimation in Civil Structures 

Using a High Gain Observer. 5th Asian Control Conference, 3, pp. 1621-1626. 

Gauthier, J. P., Hammouri, H., & Othman, S. (1992). A Simple Observer for Nonlinear 

Systems Applications to Bioreactors. IEEE Transactions on Automatic Control , 37 (6), 

875-880. 



344 

 

Gavin, H. P. (2001). Multi-duct ER Dampers. Journal of Intelligent Material Systems and 

Structures , 12 (5), 353-366. 

Ghanem, R., & Shinozuka, M. (1995a). Structural System Identification. I: Theory. 

Journal of Engineering Mechanics , 121 (2), 255-264. 

Ghanem, R., & Shinozuka, M. (1995b). Structural System Identification. II: Experimental 

Verification. Journal of Engineering Mechanics , 121 (2), 265-273. 

Giraldo, D. F., Dyke, S. J., & Caicedo, J. M. (2006). Damage Detection Accommodating 

Varying Environmental Conditions. Structural Health Monitoring , 5 (2), 155-172. 

Giraldo, D. F., Song, W., Dyke, S. J., & Caicedo, J. M. (2009). Modal Identification 

through Ambient Vibration: Comparative Study. Journal of Engineering Mechanics , 135 

(8), 759-770. 

Glisic, B., & Inaudi, D. (2007). Fiber Optic Methods for Structural Health Monitoring. 

John Wiley & Sons Ltd. 

Gorl, E., & Link, M. (2003). Damage Identification Using Changes of Eigenfrequencies 

and Mode Shapes. Mechanical Systems and Signal Processing , 17 (1), 103-110. 

Guyan, R. J. (1965). Reduction of Stiffness and Mass Matrices. AIAA Journal , 3 (2), 380. 

Hoshiya, M., & Saito, E. (1984). Structural Identification by Extended Kalman Filter. 

Journal of Engineering Mechanics , 110 (12), 1757-1772. 

Hu, C., Chen, W., Chen, Y., & Liu, D. (2003). Adaptive Kalman Filtering for Vehicle 

Navigation. Journal of Global Positioning Systems , 2 (1), 42-47. 

Ikhouane, F., & Rodellar, J. (2007). Systems with Hysteresis: Analysis, Identification and 

Control Using the Bouc-Wen Model. Wiley-Interscience. 

Ismail, M., Ikhouane, F., & Rodellar, J. (2009). The Hysteresis Bouc-Wen Model, A 

Survey. Archives of Computational Methods in Engineering , 16 (1), 161-188. 



345 

 

Jaishi, B., & Ren, W.-X. (2006). Damage Detection by Finite Element Model Updating 

using Modal Flexibility Residual. Journal of Sound and Vibration , 290, 369-387. 

Jiang, Z., & Christenson, R. (2011). A Comparison of 200 kN Magneto-rheological 

Damper Models for Use in Real-time Hybrid Simulation Pretesting. Smart Materials and 

Structures , 20 (6), 1-11. 

Johnson, E. A., Lam, H. F., Katafygiotis, L. S., & Beck, J. L. (2004). Phase I IASC-

ASCE Structural Health Monitoring Benchmark Problem Using Simulated Data. Journal 

of Engineering Mechanics , 130 (1), 3-15. 

Juang, J. N. (1994). Applied System Identification. Prentice Hall. 

Juang, J. N., & Pappa, R. S. (1985). Eigensystem Realization Algorithm for Modal 

Parameter Identification and Model Reduction. Journal of Guidance, Control, and 

Dynamics , 8 (5), 620-627. 

Julier, S. J., Uhlrnann, J. K., & Durrant-Whyte, H. F. (June 1995). A New Approach for 

Filtering Nonlinear Systems. Proceedings of the American Control Conference. Seattle, 

Washington. 

Julier, S. (2002 ). The Scaled Unscented Transformation. Proceedings of the 2002 

American Control Conference, 6. Anchorage, AK. 

Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A New Method for the Nonlinear 

Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions 

on Automatic Control , 45 (3), 477-482. 

Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A New Method for the Nonlinear 

Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions 

on Automatic Control , 45 (3), 477-482. 

Kanamori, H., Hauksson, E., & Heaton, T. (1997). Real-time Seismology and Earthquake 

Hazard Mitigation. Nature , 390, 461-464. 



346 

 

Kent, D. C. (1969). Ph.D. Thesis: Inelastic Behavior of Reinforced Concrete Members 

with Cyclic Loading. Churchcity, New Zealand: University of Canterbury. 

Kent, D. C., & Park, R. (1971). Flexural Members with Confined Concrete. Journal of 

the Structural Division , 97 (7), 1969-1990. 

Kijewski-Correa, T., Kareem, A., & Kochly, M. (2006). Experimental Verification and 

Full-Scale Deployment of Global Positioning Systems to Monitor the Dynamic Response 

of Tall Buildings. Journal of Structural Engineering , 132 (8), 1242-1253. 

Lallement, G., & Piranda, J. (1990). Localisation Methods for Parameter Updating of 

Finite Element Models in Elastodynamics. Proceedings of 8th International Modal 

Analysis Conference, (pp. 579-585). 

Lieven, N., & Ewins, D. (1988). Spatial Correlation of Mode Shapes, the Co-ordinate 

Modal Assurance Criterion (COMAC). Proceedings of the 6th International Modal 

Analysis Conference, (pp. 690-695). 

Lin, J.-W., Betti, R., Smyth, A. W., & Longman, R. W. (2001). On-line Identification of 

Non-linear Hysteretic Structural Systems Using A Variable Trace Approach. Earthquake 

Engineering And Structural Dynamics , 30 (9), 1279-1303. 

Lowes, L. N., & Mitra, N. (2004). A Beam-Column Joint Model for Simulating the 

Earthquake Response of Reinforced Concrete Frames. Pacific Earthquake Engineering 

Research Center (PEER). 

Lynch, J. P. (2004). Overview of Wireless Sensors for Real-Time Health Monitoring of 

Civil Structures. Proceedings of the 4th International Workshop on Structural Control 

and Monitoring. New York City, NY, USA. 

Mansour, M., & Hsu, T. T. (2005). Behavior of Reinforced Concrete Elements under 

Cyclic Shear. I: Experiments. Journal of Structural Engineering , 131 (1), 44-53. 



347 

 

Mariani, S., & Ghisi, A. (2007). Unscented Kalman Filtering for Nonlinear Structural 

Dynamics. Nonlinear Dynamics , 49 (1), 131-150. 

Martinez-Guerra, R., Suarez, R., & De Leon-Morales, J. (2001). Asymptotic Output 

Tracking of a Class of Nonlinear Systems by Means of an Observer. International 

Journal of Robust and Nonlinear Control , 11 (4), 373-391. 

Masri, S. F., Sheng, L. H., Caffrey, J., Nigbor, R. L., Wahbeh, M., & Abdel-Ghaffar, A. 

M. (2004). Application of a Web-enabled Real-time Structural Health Monitoring System 

for Civil Infrastructure Systems. Smart Materials and Structures , 13 (6), 1269-1283. 

MATHWORKS. (2010). Hardware Online Guide. Retrieved 2010, from MATHWORKS: 

http://www.mathworks.com/support/product/XP/productnews/ in-

teractive_guide/xPC_Target_Interactive_Guide.html 

MATHWORKS. (2010). Manual of MATLAB. MATHWORKS. 

Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (Sep. 2006). Open System for 

Earthquake Engineering Simulation User Command-Language Manual.  

Millar, A. (2002). Subset selection in regression (2nd ed.). Chapman & Hall/CRC. 

Mohamed, A. H., & Schwarz, K. P. (1999). Adaptive Kalman Filtering for INS/GPS. 

Journal of Geodesy , 73 (4), 193-203. 

Mohd Yassin, M. H. (1994). PhD Dissertation: Nonlinear Analysis of Prestressed 

Concrete Structures under Monotonic and Cyclic Loads. University of California, 

Berkeley. 

More, J. (1983). Recent Developments in Algorithms and Software for Trust Region 

Methods. Mathematical Programming: The State of the Art , 256-287. 

Mottershead, J. E., & Friswell, M. I. (1993). Model Updating in Structural Dynamics: A 

Survey. Journal of Sound and Vibration , 167 (2), 347-375. 



348 

 

NAE. (2008). Grand Challenges for Engineering. National Academy of Engineering of 

the National Academies. 

National Instruments Corporation. (2007). NI 625x Specifications. ni.com. 

NIST-TIP. (November 5, 2009). Advanced Sensing Technologies and Advanced Repair 

Materials for The Infrastructure: Water Systems, Dams, Levees, Bridges, Roads, and 

Highways. Gaithersburg, MD: National Institute of Standards and Technology (NIST) - 

Technology Innovation Program (TIP). 

Nocedal, J. (1992). Theory of algorithms for unconstrained optimization. Acta Numerica , 

1, 199-242. 

O'Callahan, J. C. (1989). A New Procedure for an Improved Reduced System (IRS) 

Model. Proceedings of 7th International Modal Analysis Conference, (pp. 17-21). 

O'Callahan, J. C., Avitabile, P., & Riemer, R. (1989). System equivalent reduction 

expansion process (SEREP). Proceedings of 7th International Modal Analysis 

Conference, (pp. 29-37). 

Olshansky, R. B., Johnson, L. A., Topping, K. C., Murosaki, Y., Ohnishi, K., Koura, H., 

et al. (2011). Opportunity in Chaos: Rebuilding After the 1994 Northridge and 1995 

Kobe Earthquakes.  

Pacific Earthquake Engineering Research Center. (2000). PEER Strong Motion Database. 

Retrieved 2009, from PEER Strong Motion Database: http://peer.berkeley.edu/smcat/ 

Palermo, D., & Vecchio, F. J. (2004). Compression Field Modeling of Reinforced 

Concrete Subjected to Reversed Loading: Verification. 101 (2), 155-164. 

Palermo, D., & Vecchio, F. J. (2007). Simulation of Cyclically Loaded Concrete 

Structures Based on the Finite-Element Method. Journal of Structural Engineering , 133 

(5), 728-738. 



349 

 

Pandey, A. K., & Biswas, M. (1994). Damage Detection in Structures using Changes in 

Flexibility. Journal of Sound and Vibration , 169 (1), 3–17. 

Pandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage Detection from Changes 

in Curvature Mode Shapes. Journal of Sound and Vibration , 145 (2), 321-332. 

Pandey, A., & Biswas, M. (1995). Damage Diagnosis of Truss Structures by Estimation 

of Flexibility Change. Modal Analysis – The International Journal of Analytical and 

Experimental Modal Analysis , 10 (2), 104-117. 

Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of Piezoelectric 

Impedance-Based Health Monitoring and Path Forward. The Shock and Vibration Digest , 

35 (6), 451-463. 

Paz, M. (1984). Dynamic condensation. AIAA Journal , 22 (5), 724-727. 

Peeters, B., & De Roeck, G. (2001). One-year Monitoring of the Z24-Bridge: 

Environmental Effects versus Damage Events. Earthquake Engineering and Structural 

Dynamics , 30 (2), 149-171. 

Pilakoutas, K., & Elnashai, A. (1995). Cyclic Behavior of Reinforced Concrete 

Cantilever Walls, Part I: Experimental Results. ACI Structural Journal , 92 (3), 271-281. 

Powell, M. J. (1975). Convergence Properties of a Class of Minimization Algorithms. In 

O. L. Mangasarian, R. R. Meyer, & S. M. Robinson, Nonlinear Programming 2 (pp. 1-

27). Academic Press. 

Rodriguez, A. .., Iwata, N., Ikhouane, F., & Rodellar, J. (2009). Model Identification of a 

Large-scale Magnetorheological Fluid Damper. Smart Materials and Structures , 18 (1), 

1-12. 

 

 



350 

 

Ruangrassamee, A., Srisamai, W., & Lukkunaprasit, P. (2006). Response Mitigation of 

the Base Isolated Benchmark Building by Semi-active Control with the Viscous-plus-

variable-friction Damping Force Algorithm. Structural Control and Health Monitoring , 

13 (2-3), 809-822. 

Salawu, O. S. (1997). Detection of Structural Damage through Changes in Frequency: A 

Review. Engineering Structures , 19 (9), 718-723. 

Sanayei, M., & DiCarlo, C. (2009). Finite Element Model Updating of Scale Bridge 

Model Using Measured Modal Response Data. Structures 2009. ASCE. 

Scott, B. D., Park, R., & Priestley, M. J. (1982). Stress-strain Behavior of Concrete 

Confined by Overlapping Hoops at Low and High Strain Rates. ACI Journal , 79 (1), 13-

27. 

Scott, B. D., Park, R., & Priestley, M. J. (1982). Stress-strain Behavior of Concrete 

Confined by Overlapping Hoops at Low and High Strain Rates. ACI Journal , 79 (1), 13-

27. 

Siringoringo, D. M., & Fujino, Y. (2006). Experimental Study of Laser Doppler 

Vibrometer and Ambient Vibration for Vibration-based Damage Detection. Engineering 

Structures , 28 (13), 1803-1815. 

Siringoringo, D. M., & Fujino, Y. (2008). System Identification of Suspension Bridge 

from Ambient Vibration Response. Engineering Structures , 30 (2), 462-477. 

Smyth, A. W., Masri, S. F., Chassiakos, A. G., & Caughey, T. K. (1999). On-line 

Parameteric Identification of MDOF Nonlinear Hysteretic Systems. Journal of 

Engineering Mechanics , 125 (2), 133-142. 

So, M. (2008). PhD dissertation: Total-Strain Based Bond/Slip and Shear/Friction 

Membrane Model for Finite Element Analysis of Reinforced Concrete. St. Louis: 

Washington University in St. Louis. 



351 

 

So, M., Harmon, T. G., & Dyke, S. (2010). FEA Implementation of Smeared Cyclic 

Bond Slip-Based Two-Dimensional Membrane Model. ACI Structural Journal , 107 (1), 

92-100. 

Song, W., & Dyke, S. (2006). Ambient Vibration Based Modal Identification of the 

Emerson Bridge Considering Temperature Effects . Proceedings of 4th World 

Conference on Structural Control and Monitoring. University of California, San Diego, 

CA. 

Song, W., & Dyke, S. J. (2010). Application of nonlinear observers in hysteretic model 

updating . Proceeding of SPIE, Sensors and Smart Structures Technologies for Civil, 

Mechanical, and Aerospace Systems 2010. San Diego, CA, USA . 

Song, W., Dyke, S. J., Yun, G., & Harmon, T. (2009). Improved Damage Localization 

and Quantification Using Subset Selection. Journal of Engineering Mechanics , 135 (6), 

548-560. 

Song, W., Giraldo, D., Clayton, E., Dyke, S., & Caicedo, J. (2006). Application of 

ARMAV for modal identification of the Emerson bridge. Proceedings of 3rd 

International Conference on Bridge Maintenance, Safety and Management (IABMAS). 

Porto, Portugal. 

Song, X., Ahmadian, M., & Southward, S. C. (2005). Modeling Magnetorheological 

Dampers with Application of Nonparametric Approach. Journal of Intelligent Material 

Systems and Structures , 16 (5), 421-432. 

Spencer Jr., B. F., Dyke, S. J., Sain, M. K., & Carlson, J. D. (1997). Phenomenological 

Model for Magnetorheological Dampers. Journal of Engineering Mechanics , 123 (3), 

230-238. 

Tasbihgoo, F., Caffrey, J. P., & Masri, S. F. (2007). Development of Data-based Model-

free Representation of Non-conservative Dissipative Systems. International Journal of 

Non-Linear Mechanics , 42 (1), 99-117. 



352 

 

Teughels, A., & De Roeck, G. (2004). Structural Damage Identification of the Highway 

Bridge Z24 by FE Model Updating. Journal of Sound and Vibration , 278 (3), 589-610. 

Teughels, A., Maeck, J., & De Roeck, G. (2002). Damage Assessment by FE Model 

Updating using Damage Functions. Computers and Structures , 80 (25), 1869-1879. 

THOMSON. (2009). Profi le Rail Linear Guides.  

Titurus, B., Friswell, M., & Starek, L. (2003). Damage Detection using Generic Elements: 

Part II. Damage Detection. Computers and Structures , 81, 2287-2299. 

Toksoy, T., & Aktan, A. E. (1994). Bridge-condition Assessment by Modal Flexibility. 

Experimental Mechanics , 34, 271–278. 

Van der Merwe, R., & Wan, E. (2003). Gaussian Mixture Sigma-Point Particle Filters for 

Sequential Probabilistic Inference in Dynamic State-Space Models. Proceedings of IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP). Hong 

Kong. 

Van der Merwe, R., Wan, E., Julier, S. J., Bogdanov, A., Harvey, G., & Hunt, J. (2004). 

Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor Fusion: Applications to 

Integrated Navigation. Proceedings of the AIAA Guidance Navigation & Control 

Conference.  

Van Overchee, P., & De Moor, B. (1996). Subspace Identification for Linear Systems: 

Theory, Implementation and Applications. Kluwer Academic. 

Wan, E. A., & van der Merwe, R. (2001). The Unscented Kalman Filter. In S. Haykin, 

Kalman Filtering and Neural Networks. John Wiley and Sons. 

Wen, Y. K. (1976). Method for Random Vibration of Hysteretic Systems. Journal of the 

Engineering Mechanics Division , 102 (2), 249-263. 



353 

 

Wolff, T., & Richardson, M. (1989). Fault Detection in Structures from Changes in Their 

Modal Parameters. Proceedings of the 7th International Modal Analysis Conference, (pp. 

87-94). 

Wu, M., & Smyth, A. (2008). Real-time Parameter Estimation for Degrading and 

Pinching Hysteretic Models. International Journal of Non-Linear Mechanics , 43 (9), 

822-833. 

Wu, M., & Smyth, A. W. (2007). Application of the Unscented Kalman Filter for Real-

time Nonlinear Structural System Identification. Structural Control and Health 

Monitoring , 14, 971-990. 

Wu, Z., & Abe, M. (2003). Proceedings of the International Conference on Structural 

Health Monitoring and Intelligent Infrastructure. (Z. Wu, & M. Abe, Eds.) Lisse, 

Netherland: Swets & Zeitlinger. 

Yan, A.-M., Kerschen, G., De Boe, P., & Golinval, J.-C. (2005a). Structural Damage 

Diagnosis under Varying Environmental Conditions-Part I: A Linear Analysis. 

Mechanical Systems and Signal Processing , 19 (4), 847-864. 

Yan, A.-M., Kerschen, G., De Boe, P., & Golinval, J.-C. (2005b). Structural Damage 

Diagnosis under Varying Environmental Conditions-Part II: Local PCA for Non-linear 

Cases. Mechanical Systems and Signal Processing , 19 (4), 865-880. 

Yang, J. N., & Huang, H. W. (2007). Sequential Non-linear Least-square Estimation for 

Damage Identification of Structures with Unknown Inputs and Unknown Outputs. 

International Journal of Non-linear Mechanics , 42 (5), 789-801. 

Yang, J. N., & Lin, S. (2005). Identification of Parameteric Variations of Structures 

Based on Least Squares Estimation and Adaptive Tracking Technique. Journal of 

Engineering Mechanics , 131 (3), 290-298. 



354 

 

Yang, J. N., Lin, S., Huang, H., & Zhou, L. (2006). An Adaptive Extended Kalman Filter 

for Structural Damage Identification. Structural Control and Health Monitoring , 13 (4), 

849-867. 

Yun, C. B., & Shinozuka, M. (1980). Identification of Nonlinear Structural Dynamic 

Systems. Journal of Structural Mechanics , 8 (2), 187-203. 

Zarate, B. A., & Caicedo, J. M. (2008). Finite Element Model Updating: Multiple 

Alternatives. Engineering Structures , 30 (12), 3724-3730. 

Zhao, L., Ochieng, W. Y., Quddus, M. A., & Noland, R. B. (2003). An Extended Kalman 

Filter Algorithm for Integrating GPS and Low Cost Dead Reckoning System Data for 

Vehicle Performance and Emissions Monitoring. Journal of Navigation , 56 (2), 257-275. 

Zhou, L., Wu, S., & Yang, J. N. (2008). Experimental Study of an Adaptive Extended 

Kalman Filter for Structural Damage Identification. Journal of Infrastructure Systems , 

14 (1), 42-51. 

  



 

 

APPENDICES 



355 

 

Appendix A 

Calculation of 𝝏𝐅𝐚𝐧𝐚 𝝏𝒅𝒊  

Using equation (2.7), 𝜕𝐅ana 𝜕𝑑𝑖  can be expanded as 

 
𝜕𝐅ana

𝜕𝑑𝑖
=
𝜕 𝚽 𝚲 −𝟏𝚽 T 

𝜕𝑑𝑖
=
𝜕𝚽 

𝜕𝑑𝑖
𝚲 −𝟏𝚽 T + 𝚽 

𝜕𝚲 −𝟏

𝜕𝑑𝑖
𝚽 T +𝚽 𝚲 −𝟏

𝜕𝚽 T

𝜕𝑑𝑖
 (A.1) 

To apply the sensitivities from the eigenvalues and mode shapes, equation (A.1) can be 

rewritten as 

 
𝜕𝐅ana

𝜕𝑑𝑖
=
𝜕𝚽 

𝜕𝑑𝑖
𝚲 −𝟏𝚽 T −𝚽 𝚲 −𝟏

𝜕𝚲 

𝜕𝑑𝑖
𝚲 −𝟏𝚽 T +𝚽 𝚲 −𝟏  

𝜕𝚽 

𝜕𝑑𝑖
 

T

 (A.2) 
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Appendix B 

Calculation of  𝝏𝚽 𝝏𝒅𝒊  and 𝝏𝐅𝐞𝐱𝐩 𝝏𝒅𝒊  

In equation (2.8), 𝐅exp  is formed using the expanded mode shape matrix 𝚽  after mass 

normalization. In this study, the mass matrix is treated as a constant. As in equation (A.2), 

𝜕𝐅exp 𝜕𝑑𝑖  can be expressed in terms of 𝜕𝚽 𝜕𝑑𝑖  as 

 
𝜕𝐅exp

𝜕𝑑𝑖
=
𝜕𝚽 

𝜕𝑑𝑖
𝚲 −𝟏𝚽 T + 𝚽 𝚲 −𝟏  

𝜕𝚽 

𝜕𝑑𝑖
 

T

 (B.1) 

Compared to equation (A.2), note that the term related with 𝜕𝚲 𝜕𝑑𝑖  has dropped out, be-

cause 𝚲  is the eigenvalue matrix obtained directly from the experiment, which would be 

independent of the damage parameters 𝐝 in the identification model. To investigate the 

term 𝜕𝚽 𝜕𝑑𝑖 , an analytical expression for 𝚽  must be provided first. Through the expan-

sion process described in section 2.1.2, after mass normalization of the expanded mode 

shapes in equation (2.10), each mode shape 𝛗 𝑖  in matrix 𝚽  can be rewritten as 

 𝛗 𝑖 =
𝐓 ⋅ φ𝑖

exp

  𝐓 ⋅ φ𝑖
exp
 

T
⋅ 𝐌 ⋅  𝐓 ⋅ φ𝑖

exp
  

1 2 
 (B.2) 

where φ𝑖
exp

= corresponding mode shape from the experimental mode shape matrix 𝚽exp . 

Using equation (B.2), the derivative of 𝛗 𝑗  with respect to 𝑑𝑖  yields 

 

𝜕𝛗 𝑗

𝜕𝑑𝑖
=
𝜕𝐓

𝜕𝑑𝑖
⋅

φ𝑖
exp

  𝐓 ⋅ φ𝑖
exp
 

T
⋅ 𝐌 ⋅  𝐓 ⋅ φ𝑖

exp
  

1 2 

−
𝐓 ⋅ φ𝑖

exp
⋅  𝐓 ⋅ φ𝑖

exp
 

T
⋅ 𝐌 ⋅  

𝜕𝐓
𝜕𝑑𝑖

⋅ φ𝑖
exp
 

  𝐓 ⋅ φ𝑖
exp
 

T
⋅ 𝐌 ⋅  𝐓 ⋅ φ𝑖

exp
  

3 2 
 

(B.3) 
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In most cases, the following expression can be used to calculate the Moore-Penrose pseu-

doinverse 𝚽ma
+  in equation (2.9). 

 𝚽ma
+ =  𝚽ma

T ⋅ 𝚽ma  
−1 ⋅ 𝚽ma

T  (B.4) 

The derivative of 𝚽ma
+  with respect to 𝑑𝑖  can be calculated as 

 

𝜕𝚽ma
+

𝜕𝑑𝑖
= − 𝚽ma

T ⋅ 𝚽ma  
−1 ⋅

𝜕 𝚽ma
T ⋅ 𝚽ma  

𝜕𝑑𝑖
⋅  𝚽ma

T ⋅ 𝚽ma  
−1 ⋅ 𝚽ma

T

+  𝚽ma
T ⋅ 𝚽ma  

−1 ⋅
𝜕𝚽ma

T

𝜕𝑑𝑖
 

= − 𝚽ma
T ⋅ 𝚽ma  

−1 ⋅   
𝜕𝚽ma

𝜕𝑑𝑖
 

T

𝚽ma + 𝚽ma
T
𝜕𝚽ma

𝜕𝑑𝑖
 

⋅  𝚽ma
T ⋅ 𝚽ma  

−1 ⋅ 𝚽ma
T +  𝚽ma

T ⋅ 𝚽ma  
−1 ⋅  

𝜕𝚽ma

𝜕𝑑𝑖
 

T

 

(B.5) 

Now the derivative of the transformation matrix 𝐓 with respect to 𝑑𝑖  is calculated as 

 
𝜕𝐓

𝜕𝑑𝑖
=

 
 
 
 
 
𝜕𝚽ma

𝜕𝑑𝑖
𝜕𝚽sa

𝜕𝑑𝑖  
 
 
 
 

⋅ 𝚽ma
+ +  

𝚽ma

𝚽sa
 ⋅
𝜕𝚽ma

+

𝜕𝑑𝑖
 (B.6) 

where both 𝜕𝚽ma 𝜕𝑑𝑖  and 𝜕𝚽sa 𝜕𝑑𝑖  are obtained by partitioning the sensitivity matrix 

𝜕𝚽 𝜕𝑑𝑖  of the mode shapes [see equation (2.44)] in the identification model in terms of 

master and slave DOFs. By substituting equations (B.5) and (B.6) into equation (B.3), the 

derivative of each mode shape 𝛗 𝑖  in matrix 𝚽  can be calculated, yielding 𝜕𝚽 𝜕𝑑𝑖  and 

𝜕𝐅exp 𝜕𝑑𝑖  in equation (B.1). 
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Appendix C 

Kalman Gain Derivation 

Considering the same setting as equations (2.65) and (2.64), the Kalman filter is derived 

to minimize the mean squared error (MSE) of the posterior estimate 𝐏𝑘+1|𝑘+1, which is 

defined as 

 𝐏𝑘+1|𝑘+1 = 𝔼   𝐱𝑘+1 − 𝐱 𝑘+1|𝑘+1  𝐱𝑘+1 − 𝐱 𝑘+1|𝑘+1 
T

|𝐘𝑘+1  (C.1) 

Because all information up to time 𝑡 =  𝑘 + 1 ⋅ ∆𝑡 is available at corrector step, “𝐘𝑘+1” 

is omitted in the derivation below. Based on the definition of Kalman filter, the posterior 

estimate 𝐱 𝑘+1|𝑘+1 can be expressed as 

 𝐱 𝑘+1|𝑘+1 = 𝐱 𝑘+1|𝑘 + 𝐊𝑘+1𝐲 𝑘+1 (C.2) 

where 𝐲 𝑘+1 = 𝐲𝑘+1 − 𝐲 𝑘+1|𝑘  is called “innovation”, which brings in the new information 

by adding measurement 𝐘𝑘+1. Substituting equation (C.2) into (C.1)  

 

𝐏𝑘+1|𝑘+1 = 𝔼    𝐱𝑘+1 − 𝐱𝑘+1|𝑘 − 𝐊𝑘+1𝐲 𝑘+1 

⋅   𝐱𝑘+1 − 𝐱 𝑘+1|𝑘 − 𝐊𝑘+1𝐲 𝑘+1 
T
  

= 𝐏𝑘+1|𝑘 − 𝐏𝐱 𝐲 𝐊𝑘+1
T −𝐊𝑘+1𝐏𝐲 𝐱 + 𝐊𝑘+1𝐏𝐲 𝐲 𝐊𝑘+1

T  

(C.3) 

where 𝐏𝐱 𝐲 = 𝐏𝐲 𝐱 
T = 𝔼  𝐱𝑘+1 − 𝐱 𝑘+1|𝑘 ⋅ 𝐲 𝑘+1

T  ; and 𝐏𝐲 𝐲 = 𝔼 𝐲 𝑘+1𝐲 𝑘+1
T  . Equation (C.3) 

is a quadratic matrix equation of 𝐊𝑘+1 , therefore, the trace of 𝐏𝑘+1|𝑘+1  is minimized 

when the following condition holds 

 
𝛛𝐏𝑘+1|𝑘+1

𝛛𝐊𝑘+1
= 2𝐏𝐲 𝐲 𝐊𝑘+1

T − 2𝐏𝐲 𝐱 = 𝟎 (C.4) 

Solving the above equation for 𝐊𝑘+1 
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 𝐊𝑘+1 = 𝐏𝐱 𝐲 𝐏𝐲 𝐲 
−1 (C.5) 

This gain is known as the optimal Kalman gain, which can yield the minimum mean 

square error estimate. And the resulting posterior estimate covariance is obtained by 

substituting (C.5) back into equation(C.3) 

 𝐏𝑘+1|𝑘+1 = 𝐏𝑘+1|𝑘 −𝐊𝑘+1𝐏𝐲 𝐲 𝐊𝑘+1
T  (C.6) 

It is worth pointing out that, the expression 𝐏𝑘+1|𝑘+1 of in equation (C.6) is only correct 

when the optimal Kalman gain 𝐊𝑘+1 is used. If a non-optimal Kalman gain is applied in-

tentionally, the expression in equation (C.3) should be used instead. 
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Appendix D 

Properties of Scaled Unscented Transformation  

The derivations in this appendix are adapted from several published literature (Julier, 

Uhlrnann, & Durrant-Whyte, June 1995);(Julier, Uhlmann, & Durrant-Whyte, 

2000);(Julier S. , 2002 ); (Wan & van der Merwe, 2001). The purpose is to merge the de-

rivations related to the unscented transformation (UT) and summarize the associated 

properties, especially those regarding the errors caused by UT. 

Consider the symmetrically distributed (e.g., Gaussian distribution) 𝐿-dimensional ran-

dom variable 𝐱 with the first and second moment given as  𝐱  and covariance 𝐏𝐱𝐱. The 

sigma points 𝐱  obtained using the original UT are given as 

 𝐱 =  𝐱  𝐱 +  𝐿 ⋅ 𝛔𝑖 𝐱 −  𝐿 ⋅ 𝛔𝑖 , 𝑖 = 1,2, . . . , 𝐿 (D.1) 

where 𝛔𝑖 =   𝐏𝐱𝐱 𝑖  is the 𝑖th column of the matrix 𝐏𝐱𝐱. This implies that the following 

equality holds 

  𝛔𝑖𝛔𝑖
T

𝐿

𝑖=0

= 𝐏𝐱𝐱 (D.2) 

The weight sequence 𝐖𝑖  corresponding to the sigma points is given as 

 𝐖𝑖 =  
0,                            𝑖 = 0
1

2𝐿
, 𝑖 = 1,2, . . . ,2𝐿

  (D.3) 

With the above setting, Theorem D.1 holds. 

Theorem D.1 The 2𝐿 + 1 sigma points 𝒙  captures the first and second moments of 𝒙 ex-

actly. 
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Proof: The matching of UT sample mean and covariance can be observed as 

 𝐱 UT ≜ 𝐖𝑖𝐱 𝑖

2𝐿

𝑖=0

= 2 ⋅ 
1

2𝐿
𝐱 

𝐿

𝑖=1

= 𝐱  (D.4) 

 𝐏UT ≜ 𝐖𝑖 𝐱 𝑖 − 𝐱 UT   𝐱 𝑖 − 𝐱 UT  
T

2𝐿

𝑖=0

= 2 ⋅ 
1

2𝐿
 𝐿𝛔𝑖 ⋅  𝐿𝛔𝑖

T

𝐿

𝑖=1

=  𝐏𝐱𝐱 (D.5) 

∎  

Assume the random variable 𝐲 is related to 𝐱 through the nonlinear function 𝐟 as 

 𝐲 = 𝐟 𝐱  (D.6) 

To evaluate the approximation error, it is further assumed that the nonlinear function 𝐟 is 

analytic on the domain of interest. If consider 𝐱 is being perturbed about the mean 𝐱  by a 

random disturbance 𝜹𝐱 with mean 𝟎 and covariance 𝐏𝐱𝐱, the multidimentional Taylor se-

ries expansion of the nonlinear function 𝐟 is expressed as 

  𝐟 𝐱 = 𝐟 𝐱  + 𝜹𝐱 =  
1

𝑛!
⋅ D𝜹𝐱

𝑛 𝐟

∞

𝑛=0

 (D.7) 

where the differential operator D𝛿𝐱
𝑛 𝐟 is defined as 

 
D𝜹𝐱
𝑛 𝐟 ≜   

𝛛

𝛛𝐱
⋅ 𝜹𝐱 

𝑛

𝐟 𝐱  
𝐱=𝐱  

 

=   𝛁 ⋅ 𝜹𝐱 𝑛𝐟 𝐱  𝐱=𝐱   

(D.8) 

where 𝛁 = 𝛛 𝛛𝐱  is the gradient row operator. A truncated version of the above series is 

written as 

 𝐲 = 𝐟 𝐱 = 𝐟 𝐱  + D𝜹𝐱𝐟 +
1

2
⋅ D𝜹𝐱

2 𝐟 +
1

3!
⋅ D𝜹𝐱

3 𝐟 +
1

4!
⋅ D𝜹𝐱

4 𝐟 + ⋯ (D.9) 
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The true mean of 𝐲 is given as 

 

𝐲 = 𝔼 𝐲 = 𝔼 𝐟 𝐱   

= 𝔼  𝐟 𝐱  + D𝜹𝐱𝐟 +
1

2
⋅ D𝜹𝐱

2 𝐟 +
1

3!
⋅ D𝜹𝐱

3 𝐟 +
1

4!
⋅ D𝜹𝐱

4 𝐟+ ⋯  

= 𝐟 𝐱  +  𝔼  
1

2
⋅ D𝜹𝐱

2 𝐟 +
1

4!
⋅ D𝜹𝐱

4 𝐟 + ⋯  

(D.10) 

The terms with odd moments in the last equation are all dropped, because, as mentioned 

before, random variable 𝐱 is symmetrically distributed, therefore the odd moments are all 

zeros. Also note that 𝔼 𝜹𝐱𝜹𝐱T = 𝐏𝐱𝐱, therefore the 2nd order term can be rewritten as  

 

𝔼 D𝜹𝐱
2 𝐟 = 𝔼  𝛁 ⋅ 𝜹𝐱 2𝐟 𝐱  𝐱=𝐱   

=  𝛁 ⋅ 𝔼 𝜹𝐱𝜹𝐱T ⋅ 𝛁T𝐟 𝐱  𝐱=𝐱   

=   𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱   

(D.11) 

Then equation can be further reduced to 

 𝐲 = 𝐟 𝐱  +
1

2
⋅   𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱  +  𝔼  
1

4!
⋅ D𝜹𝐱

4 𝐟 +
1

6!
⋅ D𝜹𝐱

6 𝐟 + ⋯  (D.12) 

With equations (D.9) and (D.12), the true covariance of 𝐲 is given as 

 

𝐏𝐲𝐲 = 𝔼  𝐲 − 𝐲   𝐲 − 𝐲  T = 𝔼 𝐲𝐲T − 𝐲 𝐲 T  

= 𝔼    
1

𝑗!𝑘!
⋅ D𝜹𝐱

𝑗
𝐟 D𝜹𝐱

𝑘 𝐟 
T

∞

𝑘=0

∞

𝑗=0

  

−  
1

 2𝑚 !  2𝑛 !
⋅ 𝔼 D𝜹𝐱

2𝑚𝐟 𝔼 D𝜹𝐱
2𝑛𝐟 T

∞

𝑛=0

∞

𝑚=0

 

(D.13) 

Consider the fact that odd moments are evaluated as zeros, and 
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𝔼 D𝜹𝐱𝐟 D𝜹𝐱𝐟 
T = 𝔼   𝛁 ⋅ 𝜹𝐱 𝐟 𝐱    𝛁 ⋅ 𝜹𝐱 𝐟 𝐱  T 𝐱=𝐱  

=  𝛁𝐟 𝐱 ⋅ 𝔼 𝜹𝐱𝜹𝐱T ⋅ 𝛁T𝐟 𝐱  𝐱=𝐱   

=  𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟
T 𝐱  𝐱=𝐱   

(D.14) 

where 𝛁𝐟 𝐱 = the Jacobian matrix of 𝐟. The equation (D.13) can be further reduced to 

 

𝐏𝐲𝐲 =  𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟
T 𝐱  

𝐱=𝐱  
+ 𝔼    

1

𝑗!𝑘!
⋅ D𝜹𝐱

𝑗
𝐟 D𝜹𝐱

𝑘 𝐟 
T

∞

𝑘=1

∞

𝑗=1

 

                   
except  𝑗=𝑘=1 

−
1

4
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T

−   
1

 2𝑚 !  2𝑛 !
⋅ 𝔼 D𝜹𝐱

2𝑚𝐟 𝔼 D𝜹𝐱
2𝑛𝐟 T

∞

𝑛=1

∞

𝑚=1                           
except  𝑚=𝑛=1 

 

(D.15) 

If the sigma points 𝐱  generated in equation (D.1) are chosen, the UT is applied by propa-

gating each sigma point 𝐱 𝑖  through the nonlinear function 𝐟 as 

 𝐲 𝑖 = 𝐟 𝐱 𝑖  (D.16) 

where sigma point 𝐱 𝑖  corresponds to the 𝑖th column of the sigma matrix 𝐱 . Theorem D.2 

considers the accuracy analysis on the statistics of 𝐲 . 

Theorem D.2 The sample mean and covariance of 𝒚  using UT agree with the true mean 

and covariance upto the 3rd order, with the errors in the 4th and higher order terms. 

Proof: The sample mean of 𝐲  can be given as  

 

𝐲 UT ≜ 𝐖𝑖𝐲 𝑖

2𝐿

𝑖=0

=  
1

2𝐿
⋅ 𝐟 𝐱 𝑖 

2𝐿

𝑖=1

 

= 𝐟 𝐱  +
1

2𝐿
  D𝛔 𝑖

𝐟 +
1

2
⋅ D𝛔 𝑖

2 𝐟 +
1

3!
⋅ D𝛔 𝑖

3 𝐟 +
1

4!
⋅ D𝛔 𝑖

4 𝐟 + ⋯ 

2𝐿

𝑖=1

 

(D.17) 
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= 𝐟 𝐱  +
1

2
⋅   𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱  

+
1

2𝐿
  

1

4!
⋅ D𝛔 𝑖

4 𝐟 +
1

6!
⋅ D𝛔 𝑖

6 𝐟 + ⋯ 

2𝐿

𝑖=1

 

where 𝛔 𝑖 = 𝐱 𝑖 − 𝐱 = ± 𝐿 ⋅ 𝛔𝑖  is the disturbance of each sigma point 𝐱 𝑖 . The last equali-

ty in equation (D.17) holds since 

 

1

2𝐿
 D𝛔 𝑖

2 𝐟

2𝐿

𝑖=1

=
1

𝐿
  𝛁 ⋅ 𝛔 𝑖𝛔 𝑖

T ⋅ 𝛁T𝐟 𝐱  
𝐱=𝐱  

𝐿

𝑖=1

 

=
1

𝐿
  𝛁 ⋅  𝐿𝛔𝑖 ⋅  𝐿𝛔𝑖

T ⋅ 𝛁T𝐟 𝐱  
𝐱=𝐱  

𝐿

𝑖=1

 

=  𝛁 ⋅   𝛔𝑖𝛔𝑖
T

𝐿

𝑖=1

 ⋅ 𝛁T𝐟 𝐱  

𝐱=𝐱 

 

=   𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱   

(D.18) 

Equation (D.18) can be considered as the sample version of equation (D.11). Comparing 

equation (D.17) with equation (D.12), the sample mean 𝐲 UT  calculated by UT agrees to 

the true mean 𝐲  upto the 3rd order, with errors introduced in the 4th and higher order 

terms. The sample covariance is calculated as 

 

 𝐏𝐲𝐲 UT
≜ 𝐖𝑖 𝐲 𝑖 − 𝐲 UT   𝐲 𝑖 − 𝐲 UT  

T

2𝐿

𝑖=0

 

=  𝐖𝑖 𝐲 𝑖𝐲 𝑖
T − 𝐲 𝑖𝐲 UT

T − 𝐲 UT𝐲 𝑖
T + 𝐲 UT𝐲 UT

T  

2𝐿

𝑖=0

 

=   𝐖𝑖𝐲 𝑖𝐲 𝑖
T 

2𝐿

𝑖=0

− 𝐲 UT𝐲 UT
T  

(D.19) 
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=
1

2𝐿
    

1

𝑗!𝑘!
⋅ D𝛔 𝑖

𝑗
𝐟 D𝛔 𝑖

𝑘 𝐟 
T

∞

𝑘=0

∞

𝑗=0

 

2𝐿

𝑖=1

−    
1

 2𝑚 !  2𝑛 ! 4𝐿2
⋅  D𝛔 𝑝

2𝑚𝐟

2𝐿

𝑝=1

⋅ D𝛔 𝑞
2𝑛𝐟T

2𝐿

𝑞=1

 

∞

𝑛=0

∞

𝑚=0

 

First consider the case where 𝑘 = 𝑛 = 0. Because 

 
1

2𝐿
   

1

𝑗!
⋅ D𝛔 𝑖

𝑗
𝐟 ⋅ 𝐟T 𝐱  

∞

𝑗=0

 

2𝐿

𝑖=1

=
1

2𝐿
  

1

𝑗!
⋅ D𝛔 𝑖

𝑗
𝐟

2𝐿

𝑖=1

⋅ 𝐟T 𝐱   

∞

𝑗=0

 (D.20) 

and 

 

  
1

 2𝑚 ! 4𝐿2
⋅ D𝛔 𝑝

2𝑚𝐟

2𝐿

𝑝=1

⋅ 𝐟T 𝐱  

2𝐿

𝑞=1

 

∞

𝑚=0

=   
1

 2𝑚 ! 2𝐿
⋅ D𝛔 𝑝

2𝑚𝐟

2𝐿

𝑝=1

⋅ 𝐟T 𝐱   

∞

𝑚=0

 

(D.21) 

Given the fact that the terms with odd moments in equation (D.20) are all evaluated as 

zeros, it is clear that equation (D.20) and equation (D.21) are equal to each other. 

Next, consider the case where 𝑗 = 𝑘 = 1. The follow equation holds 

 

1

2𝐿
  D𝛔 𝑖

𝐟 ⋅  D𝛔 𝑖
𝐟 

T
 

2𝐿

𝑖=0

=
1

𝐿
  𝛁𝐟 𝐱 ⋅ 𝛔 𝑖𝛔 𝑖

T ⋅ 𝛁𝐟T 𝐱  
𝐱=𝐱  

𝐿

𝑖=0

 

=  𝛁𝐟 𝐱 ⋅
1

𝐿
  𝐿𝛔𝑖 ⋅  𝐿𝛔𝑖

T
 

𝐿

𝑖=1

⋅ 𝛁𝐟T 𝐱  

𝐱=𝐱 

 

=  𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟
T 𝐱  𝐱=𝐱  

(D.22) 

Equation (D.22) is a sample version of equation (D.14). Substituting equations (D.18), 

(D.20), (D.21) and (D.22) into equation (D.19) 
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 𝐏𝐲𝐲 UT
=  𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟

T 𝐱  𝐱=𝐱  +
1

2𝐿
    

1

𝑗!𝑘!
⋅ D𝛔 𝑖

𝑗
𝐟 D𝛔 𝑖

𝑘 𝐟 
T

∞

𝑘=1

∞

𝑗=1

 

                 
except  𝑗=𝑘=1 

2𝐿

𝑖=1

−
1

4
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T

−    
1

 2𝑚 !  2𝑛 ! 4𝐿2
⋅ D𝛔 𝑝

2𝑚𝐟

2𝐿

𝑝=1

⋅  D𝛔 𝑞
2𝑛𝐟T

2𝐿

𝑞=1

 

∞

𝑛=1

∞

𝑚=1                               
except  𝑚=𝑛=1

 

(D.23) 

Again comparing equation (D.23) with equation (D.15), the covariance calculated by UT 

 𝐏𝐲𝐲 UT
 agrees to the true covariance 𝐏𝐲𝐲 with errors introduced by 4th and higher order 

terms.  ∎ 

For illustrative purpose, the mean 𝐲 Linear  and covariance  𝐏𝐲𝐲 linear
 evaluated using li-

nearization methods that  has been adopted in the EKF is shown as 

 𝐲 linear = 𝐟 𝐱   (D.24) 

  𝐏𝐲𝐲 linear
=  𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟

T 𝐱  𝐱=𝐱   (D.25) 

It is observed that the linearization truncates both 𝐲 linear  and  𝐏𝐲𝐲 linear
 after the first 

term, but the UT does not truncate the nonlinear function 𝐟, and hence 𝐲 UT  and  𝐏𝐲𝐲 UT
 at 

any order. Therefore, the term-by-term error introduced in UT is smaller than lineariza-

tion. This observation is also the reason that UKF is, if not better, at least as accurate as 

EKF. 

However, the sigma point selection in (D.1) has a significant drawback. As the dimension 

of the state space 𝐿 increases, the distance of the sigma points 𝐱 𝑖  to the center 𝐱  also in-

creases. Therefore, the error effect introduced by higher order terms becomes more and 

more significant in higher dimensional problems. To overcome this  dimensional effect, 
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an auxiliary random variable is introduced by scaling the perturbation caused by original 

sigma points as 

 𝐳 = 𝐠 𝐱 =
𝐟 𝐱 + 𝛼 𝐱 − 𝐱   − 𝐟 𝐱  

𝜇
+ 𝐟 𝐱   (D.26) 

where 𝛼 is a positive point scaling parameter and 𝜇 is a normalization term which scales 

the transformed point about 𝐟 𝐱   to offset the effects of 𝛼. Taking a Taylor series expan-

sion of 𝐳 about 𝐱  

 𝐳 = 𝐟 𝐱  +
𝛼

𝜇
D𝜹𝐱𝐟 +

1

2
⋅
𝛼2

𝜇
D𝜹𝐱

2 𝐟 +
1

3!
⋅
𝛼3

𝜇
D𝜹𝐱

3 𝐟 +
1

4!
⋅
𝛼4

𝜇
D𝜹𝐱

4 𝐟 + ⋯ (D.27) 

where 𝜹𝐱 = 𝐱 − 𝐱 ; and the definition of D𝜹𝐱
𝑛 𝐟 in equation (D.8) is used. This implies 

 D𝛼𝜹𝐱
𝑛 𝐟 =   

𝛛

𝛛𝐱
⋅ 𝛼𝜹𝐱 

𝑛

𝐟 𝐱  
𝐱=𝐱  

= 𝛼𝑛   
𝛛

𝛛𝐱
⋅ 𝜹𝐱 

𝑛

𝐟 𝐱  
𝐱=𝐱  

= 𝛼𝑛D𝜹𝐱
𝑛 𝐟  (D.28) 

Taking the expectation, the true mean of 𝐳 is calculated as 

 

𝐳 = 𝔼 𝐳 = 𝐟 𝐱  +
1

2
⋅
𝛼2

𝜇
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱  

+ 𝔼  
1

4!
⋅
𝛼4

𝜇
D𝜹𝐱

4 𝐟 +
1

6!
⋅
𝛼6

𝜇
D𝜹𝐱

6 𝐟 + ⋯  

(D.29) 

The corresponding sample mean obtained by using the original UT [equation (D.1)] is 

 

𝐳 UT ≜ 𝐖𝑖𝐳 𝑖

2𝐿

𝑖=0

=  
1

2𝐿
⋅ 𝐠 𝐱 𝑖 

2𝐿

𝑖=1

 

= 𝐟 𝐱  +
1

2
⋅
𝛼2

𝜇
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱  

+
1

2𝐿
  

1

4!
⋅
𝛼4

𝜇
D𝛔 𝑖

4 𝐟 +
1

6!
⋅
𝛼6

𝜇
D𝛔 𝑖

6 𝐟 + ⋯ 

2𝐿

𝑖=1

 

(D.30) 



368 

 

It is noted that, if 𝜇 = 𝛼2, the equations (D.29) and (D.30) agree to their counterparts --- 

equations (D.12) and (D.17) to the 3rd order, with the 4th and higher order terms scaled 

geometrically by parameter 𝛼. 

For the calculation of the covariance, let 𝐏𝐳𝐳
∗ = 𝜇𝐏𝐳𝐳 

 

𝐏𝐳𝐳
∗ ≜ 𝜇𝔼  𝐳 − 𝐳   𝐳 − 𝐳  T  

=
𝛼2

𝜇
 𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟

T 𝐱  𝐱=𝐱  + 𝔼    
𝛼𝑗+𝑘

𝑗! 𝑘!𝜇
⋅ D𝜹𝐱

𝑗
𝐟 D𝜹𝐱

𝑘 𝐟 
T

∞

𝑘=1

∞

𝑗=1

 

                   
except  𝑗=𝑘=1 

−
𝛼4

4𝜇
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T

−   
𝛼2 𝑚+𝑛 

 2𝑚 !  2𝑛 ! 𝜇
⋅ 𝔼 D𝜹𝐱

2𝑚𝐟 𝔼 D𝜹𝐱
2𝑛𝐟 T

∞

𝑛=1

∞

𝑚=1                           
except  𝑚=𝑛=1 

 

(D.31) 

and the scaled covariance obtained using UT is given as 

 

 𝐏𝐳𝐳
∗  UT ≜ 𝜇 𝐖𝑖 𝐳 𝑖 − 𝐳 UT   𝐳 𝑖 − 𝐳 UT  

T

2𝐿

𝑖=0

 

=
𝛼2

𝜇
 𝛁𝐟 𝐱 𝐏𝐱𝐱𝛁𝐟

T 𝐱  𝐱=𝐱  

+
1

2𝐿
    

𝛼𝑗+𝑘

𝑗!𝑘! 𝜇
⋅ D𝛔 𝑖

𝑗
𝐟 D𝛔 𝑖

𝑘 𝐟 
T

∞

𝑘=1

∞

𝑗=1

 

                   
except  𝑗=𝑘=1 

2𝐿

𝑖=1

−
𝛼4

4𝜇
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T

−    
𝛼2 𝑚+𝑛 

 2𝑚 !  2𝑛 ! 4𝐿2𝜇
⋅ D𝛔 𝑝

2𝑚𝐟

2𝐿

𝑝=1

⋅ D𝛔 𝑞
2𝑛𝐟T

2𝐿

𝑞=1

 

∞

𝑛=1

∞

𝑚=1                                 
except  𝑚=𝑛=1

 

(D.32) 
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Similar as in the calculation of mean, if 𝜇 = 𝛼2, equations (D.31) and (D.32) agree to eq-

uations (D.15) and (D.23) to the 3rd order, with the 4th and higher order terms scaled 

geometrically by parameter 𝛼. 

With the same sigma point selection as equation (D.1), by scaling the nonlinear transfor-

mation (D.6) to (D.26), the auxillary UT can obtain the approximated statistical informa-

tion with the same accuracy. However, this technique requires one to alter the fundamen-

tal transformation. To circumvent this requirement, instead of modifying the nonlinear 

transformation, the original sigma points are scaled to yield the same results. 

With the same nonlinear transformation defined in equation (D.6), the scaled UT is 

equipped with a new set of sigma points as 

 𝐱 ′ =  𝐱  𝐱 + 𝛼 𝐿 ⋅ 𝛔𝑖 𝐱 − 𝛼 𝐿 ⋅ 𝛔𝑖 , 𝑖 = 1,2, . . . , 𝐿 (D.33) 

which is defined as scaling the perturbation of the original sigma points with scaled by 

parameter 𝛼. And the weight sequence is correspondingly updated to 

 𝐖𝑖
′ =  

𝐖0 𝛼2 + 1 − 1 𝛼2 , 𝑖 = 0

𝐖𝑖 𝛼
2 , 𝑖 = 1,2, . . . ,2𝐿

  (D.34) 

Theorem D.3 shows that, under certain condition, the scaled UT gives the same results as 

the auxiliary UT defined in equation (D.26). 

Theorem D.3 The sample mean and covariance given by the scaled UT are defined as 

 𝐲 UT
′ ≜ 𝐖𝑖

′𝐲 𝑖
′

2𝐿

𝑖=0

=  𝐖𝑖
′𝐟 𝐱 𝑖

′ 

2𝐿

𝑖=0

 (D.35) 

 
 𝐏𝐲𝐲

′  
UT

≜ 𝐖𝑖
′  𝐲 𝑖

′ − 𝐲 UT
′   𝐲 𝑖

′ − 𝐲 UT
′  T

2𝐿

𝑖=0

+  1 − 𝛼2  𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T  

(D.36) 
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if 𝜇 = 𝛼2, then 𝒚 𝑈𝑇
′ = 𝒛 𝑈𝑇  and  𝑷𝒚𝒚

′  
𝑈𝑇

=  𝑷𝒛𝒛
∗  𝑈𝑇 , i.e., the scaled UT yields the same 

statistic information as the auxillary form. 

Proof: First show that the scaled UT preserves the statistical information of 𝐱 

  𝐖𝑖
′

2𝐿

𝑖=0

=  1 −
1

𝛼2
 +

1

𝛼2
 

1

𝐿

𝐿

𝑖=1

= 1 (D.37) 

 𝐱 UT
′ ≜ 𝐖𝑖

′𝐱 𝑖
′

2𝐿

𝑖=0

=  1 −
1

𝛼2
 ⋅ 𝐱 + 

1

𝐿𝛼2
𝐱 

𝐿

𝑖=1

= 𝐱  (D.38) 

 𝐏UT
′ ≜ 𝐖𝑖

′  𝐱 𝑖
′ − 𝐱 UT

′   𝐱 𝑖
′ − 𝐱 UT

′  T
𝟐𝑳

𝒊=𝟎

=  
1

𝐿𝛼2
𝛼 𝐿𝛔𝑖𝛼 𝐿𝛔𝑖

T

𝐿

𝑖=1

=  𝐏𝐱𝐱 (D.39) 

The sigma point of auxillary random variable 𝐳 𝑖  is rewritten as 

 

𝐳 𝑖 = 𝐠 𝐱 𝑖 =
𝐟 𝐱 𝑖

′  − 𝐟 𝐱  

𝜇
+ 𝐟 𝐱   

=  1 −
1

𝜇
 𝐲 0

′ +
1

𝜇
𝐲 𝑖
′  

(D.40) 

Substituting equations (D.34), (D.35) and (D.40) into equation (D.30), and using the fact 

that  𝐖𝑖
2𝐿
𝑖=0 = 1, the sample mean of auxiliary random variable 𝐳 is calculated as 
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𝐳 UT ≜ 𝐖𝑖𝐳 𝑖

2𝐿

𝑖=0

 

=  1 −
1

𝜇
 𝐲 0

′ +
1

𝜇
 𝐖𝑖𝐲 𝑖

′

2𝐿

𝑖=0

 

=  1 −
1

𝜇
 𝐲 0

′ −
𝛼2 − 1

𝜇
𝐲 0
′ +

𝛼2

𝜇
 𝐖𝑖

′𝐲 𝑖
′

2𝐿

𝑖=0

 

=
𝜇 − 𝛼2

𝜇
𝐲 0
′ +

𝛼2

𝜇
𝐲 UT
′  

(D.41) 

Equation (D.41) shows that, if 𝜇 = 𝛼2, then 𝐲 UT
′ = 𝐳 UT . Also 

 𝐳 𝑖 − 𝐳 UT = −
1 − 𝛼2

𝜇
 𝐲 0

′ − 𝐲 UT
′  +

1

𝜇
 𝐲 𝑖

′ − 𝐲 UT
′   (D.42) 

And, from equations (D.34) and (D.37), the following relationships hold. 

 

 𝐖𝑖 𝐲 𝑖
′ − 𝐲 UT

′   𝐲 𝑖
′ − 𝐲 UT

′  T
2𝐿

𝑖=0

 

= 𝛼2  𝐖𝑖
′  𝐲 𝑖

′ − 𝐲 UT
′   𝐲 𝑖

′ − 𝐲 UT
′  T

2𝐿

𝑖=0

+  1 − 𝛼2  𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T  

(D.43) 

 

 𝐖𝑖 𝐲 𝑖
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T
2𝐿

𝑖=0

=  𝐖𝑖 𝐲 0
′ − 𝐲 UT

′   𝐲 𝑖
′ − 𝐲 UT

′  T
2𝐿

𝑖=0

 

=   𝐖𝑖 𝐲 𝑖
′ − 𝐲 UT

′  

2𝐿

𝑖=0

  𝐲 0
′ − 𝐲 UT

′  T  

=   𝛼2 − 1 𝐲 UT
′ +  1 − 𝛼2 𝐲 0

′   𝐲 0
′ − 𝐲 UT

′  T  

=  1 − 𝛼2  𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T  

(D.44) 

  𝐖𝑖 𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T
2𝐿

𝑖=0

=  𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T  (D.45) 
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By equations (D.32) and (D.42), the scaled covariance of the auxiliary random variable 𝐳 

is rewritten as 

 

 𝐏𝐳𝐳
∗  UT ≜ 𝜇 𝐖𝑖 𝐳 𝑖 − 𝐳 UT   𝐳 𝑖 − 𝐳 UT  

T

2𝐿

𝑖=0

 

=
1

𝜇
 𝐖𝑖  1 − 𝛼2 2 𝐲 0

′ − 𝐲 UT
′   𝐲 0

′ − 𝐲 UT
′  T

2𝐿

𝑖=0

−  1 − 𝛼2  𝐲 0
′ − 𝐲 UT

′   𝐲 𝑖
′ − 𝐲 UT

′  T

−  1 − 𝛼2  𝐲 𝑖
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T

+  𝐲 𝑖
′ − 𝐲 UT

′   𝐲 𝑖
′ − 𝐲 UT

′  T  

(D.46) 

Substituting equations (D.36), (D.43), (D.44), and (D.45) into equation (D.46) 

 

 𝐏𝐳𝐳
∗  UT =

1

𝜇
 𝐖𝑖 − 1 − 𝛼2 2 𝐲 0

′ − 𝐲 UT
′   𝐲 0

′ − 𝐲 UT
′  T 

2𝐿

𝑖=0

+
𝛼2

𝜇
 𝐖𝑖

′  𝐲 𝑖
′ − 𝐲 UT

′   𝐲 𝑖
′ − 𝐲 UT

′  T
2𝐿

𝑖=0

+
 1 − 𝛼2 

𝜇
 𝐲 0

′ − 𝐲 UT
′   𝐲 0

′ − 𝐲 UT
′  T  

=
𝛼2

𝜇
  𝐖𝑖

′  𝐲 𝑖
′ − 𝐲 UT

′   𝐲 𝑖
′ − 𝐲 UT

′  T
2𝐿

𝑖=0

+  1 − 𝛼2  𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T  

=
𝛼2

𝜇
 𝐏𝐲𝐲

′  
UT

 

(D.47) 

This equation shows if 𝜇 = 𝛼2, then  𝐏𝐲𝐲
′  

UT
=  𝐏𝐳𝐳

∗  UT .  ∎ 

Theorem D.3 shows that the scaled UT generates the same estimate as the auxiliary form. 

Therefore, without changing the nonlinear transformation 𝐟, by scaling the sigma points 

instead, the scaled UT can still capture the first and second moments up to 3rd order, with 
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errors in 4th and higher order terms scaled by parameter. To further reduce the error in 

higher order terms, another scaling parameter 𝛽  is added. The following explanation 

about 𝛽 is rather informal. From equations (D.15) and (D.32), extract the 4th order terms 

 

𝓞4 𝐏𝐲𝐲
′  

UT
= 𝓞4 𝐏𝐳𝐳

∗  UT  

=
1

2𝐿
 

𝛼4

4𝜇
⋅ D𝛔 𝑖

2 𝐟 D𝛔 𝑖
2 𝐟 

T
2𝐿

𝑖=1

+
1

2𝐿
 

𝛼4

6𝜇
⋅ D𝛔 𝑖

3 𝐟 D𝛔 𝑖
𝐟 

T
2𝐿

𝑖=1

+
1

2𝐿
 

𝛼4

6𝜇
⋅ D𝛔 𝑖

𝐟 D𝛔 𝑖
3 𝐟 

T
2𝐿

𝑖=1

−
𝛼4

4𝜇
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T  

(D.48) 

and 

 

𝓞4 𝐏𝐲𝐲 =
1

4
⋅ 𝔼 D𝜹𝐱

2 𝐟 D𝜹𝐱
2 𝐟 T +

1

6
⋅ 𝔼 D𝜹𝐱

3 𝐟 D𝜹𝐱𝐟 
T 

+
1

6
⋅ 𝔼  D𝜹𝐱𝐟 D𝜹𝐱

3 𝐟 
T
 −

1

4
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T  

(D.49) 

Assume 𝐿 = 1 and the covariace 𝐏𝐱𝐱 = 𝜍2, equations (D.48) and (D.49) can be further 

reduced to 

 

𝓞4 𝐏𝐲𝐲
′  

UT
=
𝛼4

4𝜇
⋅  
𝑑2f

𝑑x2
 

2

𝜍4 +
𝛼4

3𝜇

𝑑3f

𝑑x3

𝑑f

𝑑x
𝜍4 −

𝛼4

4𝜇
⋅  
𝑑2f

𝑑x2
 

2

𝜍4  

=
𝛼4

3𝜇

𝑑3f

𝑑x3

𝑑f

𝑑x
𝜍4 

(D.50) 

 

𝓞4 𝐏𝐲𝐲 =
1

4
⋅  
𝑑2f

𝑑x2
 

2

𝔼  𝛿x 4 +
1

3
⋅
𝑑3f

𝑑x3

𝑑f

𝑑x
𝔼  𝛿x 4 

−
1

4
⋅  
𝑑2f

𝑑x2
 

2

𝜍4 

(D.51) 

notice that if 𝜇 = 𝛼2, and 𝔼  𝛿x 4 = 3𝜍4, the error in the 4th order term is given as 
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 𝓞4 𝐏𝐲𝐲 − 𝓞4 𝐏𝐲𝐲
′  

UT
=

1

2
⋅  
𝑑2f

𝑑x2
 

2

𝜍4 +  1 −
𝛼2

3
 
𝑑3f

𝑑x3

𝑑f

𝑑x
𝜍4 (D.52) 

Also note that from equation (D.17)  

 

 𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T =  𝐲 UT
′ − 𝐟 𝐱    𝐲 UT

′ − 𝐟 𝐱   T  

=
1

4
  𝛁𝐏𝐱𝐱𝛁

T 𝐟 𝐱  𝐱=𝐱    𝛁𝐏𝐱𝐱𝛁
T 𝐟 𝐱  𝐱=𝐱 

T + H. O. T. 

=
1

4
⋅  
𝑑2f

𝑑x2
 

2

𝜍4 + ⋯ 

(D.53) 

Therefore, the definition of  𝐏𝐲𝐲
′  

UT
 in equation (D.36) is modified as 

 
 𝐏𝐲𝐲

′  
UT

≜ 𝐖𝑖
′  𝐲 𝑖

′ − 𝐲 UT
′   𝐲 𝑖

′ − 𝐲 UT
′  T

2𝐿

𝑖=0

+  1 − 𝛼2 + 𝛽  𝐲 0
′ − 𝐲 UT

′   𝐲 0
′ − 𝐲 UT

′  T 

(D.54) 

The corresponding error term in equation (D.52) has been updated as 

 𝓞4 𝐏𝐲𝐲 − 𝓞4 𝐏𝐲𝐲
′  

UT
=

2 − 𝛽

4
⋅  
𝑑2f

𝑑x2
 

2

𝜍4 +  1 −
𝛼2

3
 
𝑑3f

𝑑x3

𝑑f

𝑑x
𝜍4 (D.55) 

To minimize the error associated with the 4th and higher order terms, parameters 

𝛼 ≪ 1,𝛽 = 2 are chosen. 

In summary, the scaled UT overcomes the difficulties caused by higher dimensional state 

space. With proper chosen parameters, the statistical information estimated by the scaled 

UT is accurate up to the 3rd order, and the error in the 4th order also minimized. 

By setting scaling parameter 𝛼2 =  𝐿 + 𝜆  𝐿 + 𝜅   (with 𝜅 = 0 in this study), the scaled 

UT defined by equations (D.33), (D.34) and (D.54) yields the UKF method described in 

section 2.3.3. 
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Appendix E 

Convergence Proof of the High-Gain Filter 

Based on the setting in section 2.3.4, the original nonlinear system is given in equations 

(2.100) and (2.101). The technical proof shown below is to demonstrate the convergence 

property of the HG filter. The main part of the proof is adapted from (Gauthier, 

Hammouri, & Othman, 1992), with the same framework but certain modifications to 

make it more succinct. 

The proof begins with showing the property of gain matrix 𝐊 λ  in equation (2.104). 

𝐊 λ  satisfies the (continuous-time) Lyapunov equation (2.105), which is rewritten in its 

standard form as 

  −  𝐀 +
λ

2
𝐈  

T

𝐊 + 𝐊  −  𝐀 +
λ

2
𝐈  + 𝐂T𝐂 = 𝟎 (E.1) 

Based on the definition in equation (2.102), it is not difficult to show that the eigenvalues 

of  𝐀 + λ 2 𝐈  are all equal to −λ 2 , which implies  𝐀 + λ 2 𝐈  is Hurwitz if λ > 0. 

Since 𝐂T𝐂 ≥ 𝟎, by converse Lyapunov theorem, the solution 𝐊 λ ≥ 𝟎  as well. And 

𝐊 λ  can be calculated as 

 

 
 
 

 
 𝐊 λ 11 =

1

λ

𝐊 λ 𝑖 ,1 = 𝐊 λ 1,𝑖 = −
1

λ
𝐊 λ 𝑖−1,1

𝐊 λ 𝑖,𝑗 = −
1

λ
 𝐊 λ 𝑖−1,𝑗 + 𝐊 λ 𝑖,𝑗−1 , otherwise

  (E.2) 

This implies 

 𝐊 λ 𝑖,𝑗 =
1

λ𝑖+𝑗−1
𝐊 1 𝑖,𝑗  (E.3) 

Using equations (2.100), (2.101), and (2.104), consider the error  𝐞 = 𝐱 − 𝐱  dynamics 
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 𝐞 = 𝐱  − 𝐱 =  𝐀 − 𝐊 λ −𝟏𝐂T𝐂 𝐞 + 𝐟 𝐱  𝑡 ,𝐮 𝑡  − 𝐟 𝐱 𝑡 ,𝐮 𝑡   (E.4) 

and 

 

𝑑

𝑑𝑡
 𝐞T𝐊 λ 𝐞 = 2𝐞T𝐊 λ 𝐞 

= 2𝐞T𝐊 λ 𝐀𝐞 − 2 𝐂𝐞 2

+ 2𝐞T𝐊 λ  𝐟 𝐱  𝑡 ,𝐮 𝑡  − 𝐟 𝐱 𝑡 ,𝐮 𝑡    

(E.5) 

Substituting equation (2.105) into (E.5) 

 

𝑑

𝑑𝑡
 𝐞T𝐊 λ 𝐞 = −λ𝐞T𝐊 λ 𝐞 −  𝐂𝐞 2

+ 2𝐞T𝐊 λ  𝐟 𝐱  𝑡 ,𝐮 𝑡  − 𝐟 𝐱 𝑡 ,𝐮 𝑡    

(E.6) 

Denote the norm defined by the positive semi-defintie symmetric matrix 𝐊 λ  as 

  𝐱 𝐊 λ =  𝐱T𝐊 λ 𝐱 (E.7) 

Applying the Cauchy-Schwarz inequality to equation (E.6) 

 
𝑑

𝑑𝑡
 𝐞 𝐊 λ ≤ −

λ

2
 𝐞 𝐊 λ +  𝐟 𝐱  𝑡 ,𝐮 𝑡  − 𝐟 𝐱 𝑡 ,𝐮 𝑡   𝐊 λ  (E.8) 

Based on the assumptions of 𝐟 in equation (2.103) 

  𝑓𝑖 𝐱 𝑖 𝑡 ,𝐮 𝑡  − 𝑓𝑖 𝐱𝑖 𝑡 ,𝐮 𝑡   ≤ 𝑘𝑖 𝐞𝑖 ℝ𝑖  (E.9) 

where  ∙ ℝ𝑖  denotes the Euclidean norm on ℝ𝑖 . By applying equation (E.3) and denoting 

𝑘 = sup𝑖 𝑘𝑖  and 𝐾 = sup𝑖 ,𝑗  𝐊 1 𝑖 ,𝑗   

 
𝑑

𝑑𝑡
 𝐞 𝐊 λ ≤ −

λ

2
 𝐞 𝐊 λ +  𝑘

2𝐾 
1

λ𝑖+𝑗−1
 𝐞𝑖 ℝ𝑖 𝐞𝑗 ℝ𝑗

𝑖 ,𝑗

 (E.10) 

Denoting ξ𝑖 = 𝐞𝑖 λ
𝑖 , since 
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𝐞𝑖
λ𝑖
 
ℝ𝑖
≤  𝛏𝑖 

ℝ𝑖
≤  𝛏 , for λ > 1 (E.11) 

where  ∙  denotes the Euclidean norm on ℝ𝑛 . 

 
𝑑

𝑑𝑡
 𝐞 𝐊 λ ≤ −

λ

2
 𝐞 𝐊 λ + 𝑘𝑛 λ𝐾 𝛏 2 (E.12) 

Due to the equivalence of norms on finite-dimensional vector space 

  𝛏 ≤ 𝑠 𝛏 𝐊 1  (E.13) 

Also by equation (E.3) 

  𝛏 𝐊 1 
2 =  𝐊 1 𝑖,𝑗

𝐞𝑖
λ𝑖
𝐞𝑗

λ𝑗
𝑖 ,𝑗

=
1

λ
 

1

λ𝑖+𝑗−1
𝐊 1 𝑖,𝑗𝐞𝑖𝐞𝑗

𝑖 ,𝑗

=
1

λ
 𝐞 𝐊 λ 

2  (E.14) 

Therefore, 

 
𝑑

𝑑𝑡
 𝐞 𝐊 λ ≤ −

λ

2
 𝐞 𝐊 λ + 𝑘𝑛𝑠 𝐾 𝐞 𝐊 λ  (E.15) 

This equation implies, if λ is chosen to be sufficiently large, such that the following in-

equality holds  γ > 0  

 
𝑑

𝑑𝑡
 𝐞 𝐊 λ ≤ −γ 𝐞 𝐊 λ  (E.16) 

then 𝐞 approaches 𝟎 exponentially fast. 

It is noted that, if 𝐱𝑖  in the definition of 𝐟 𝐱 𝑡 ,𝐮 𝑡   in equation (2.103) is relaxed to 𝐱, a 

similar conclusion as (E.16) still holds. 
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Appendix F 

Passivity and Energy Dissipation in Dynamic Systems 

For the sake of simplicity, consider the following single degree of freedom (SDOF) sys-

tem consists of mass 𝑚, dashpot with viscous damping 𝑐, and linear spring with stiffness 

𝑘 (see Figure F.1). Denote 𝑥 as the displacement and 𝑣 as the velocity of the mass. This 

system is well-known to be, if 𝑐 > 0, a passive system that dissipates energy rather than 

generates energy. 

 

Figure F.1 Single degree of freedom system 

Suppose an external force 𝑓 is acting on the mass, and the behavior of the mass is go-

verned by the following equation of motion 

 𝑚𝑣 + 𝑐𝑣 + 𝑘𝑥 = 𝑓 (F.1) 

To better understand the dissipated energy in the SDOF system, assume it is subjected to 

a harmonic excitation 𝑓 with frequency 𝜔, and the amplitude of the resulted (steady state) 

harmonic oscillation is 𝑥𝑚 . The work done by the external force 𝑓 per cycle of oscillation 

can be represented by the area enclosed in the ellipse shown in Figure F.2 (a), and is cal-

culated as 

 ∆𝑊𝑓 = 𝜋𝑐𝜔𝑥𝑚
2  (F.2) 
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Not surprisingly, this value is equal to the work done by the viscous damping force 

𝑓𝑐 = 𝑐𝑣 alone [shown in Figure F.2 (b)]. This outcome is due to the fact that the dashpot 

is the only energy dissipative component in the current configuration of the system. The 

energy dissipated by the system (dashpot) is equal to the energy supplied by external ex-

citation 𝑓. 

 

Figure F.2 Energy dissipation in SDOF system 

To provide a mathematic argument on characterizing the energy dissipation, “passivity” 

is introduced herein (Ikhouane & Rodellar, 2007). Using the same example as above, the 

SDOF system can be considered as a dynamical system with input 𝑓 and output 𝑣. Tak-

ing the product yields 

 𝑓𝑣 = 𝑚𝑣 𝑣 + 𝑐𝑣2 + 𝑘𝑥𝑣 (F.3) 

Defining the storage function, which measures the energy stored in the system as 

 𝑉 𝑥, 𝑣 =
1

2
𝑘𝑥2 +

1

2
𝑚𝑣2 (F.4) 

Taking the derivative of 𝑉 with respect to time 𝑡, and using equation (F.3) 
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 𝑓𝑣 = 𝑉 + 𝑐𝑣2 (F.5) 

Equation (F.5) shows the power flow into the system 𝑓𝑣 is larger than (𝑐 > 0) or equal to 

(𝑐 = 0) the rate of change of the energy stored in the system 𝑉 , i.e., the system is passive 

and incapable of generating net energy. This analysis is consistent with the finding in the 

aforementioned area calculation. 

In the above example, the only passive component is the dashpot. In the case of multiple 

passive components, it can be shown that, with simple parallel and series connections, the 

overall system is still passive. Consider 𝑛 passive components with individual input 𝑓𝑖  

and output 𝑣𝑖 , due to the assumed passivity, the following is true 

 𝑓𝑖𝑣𝑖 ≥ 𝑉 𝑖 , 𝑖 = 1,⋯ ,𝑛 (F.6) 

where 𝑉𝑖  is the storage function for the 𝑖th component. The cases with parallel and series 

connections are presented below. More involved connection schemes can be derived 

based on these two fundamental cases. 

 Parallel Connection 

In this case, the motion of each component 𝑥𝑖  is equivalent to the overall system 𝑥 

(see Figure F.3). 

 

Figure F.3 Parallel connected passive system 
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Therefore, the overall passivity can be evaluated by examining the product of the 

overall input and output 𝑓𝑣 

 𝑓𝑣 =  𝑓𝑖

𝑛

𝑖=1

⋅ 𝑣 =  𝑓𝑖𝑣𝑖

𝑛

𝑖=1

≥ 𝑉 𝑖

𝑛

𝑖=1

≜ 𝑉  (F.7) 

where the storage function for the overall system is defined as 𝑉 =  𝑉𝑖
𝑛
𝑖=1 . 

 Series Connection 

In this case, the input force 𝑓𝑖  of each individual component is equal to the overall 

system input 𝑓 (see Figure F.4). 

 

Figure F.4 Series connected passive system 

The overall system is also passive, because 

 𝑓𝑣 = 𝑓 ⋅ 𝑣𝑖

𝑛

𝑖=1

=  𝑓𝑖𝑣𝑖

𝑛

𝑖=1

≥ 𝑉 𝑖

𝑛

𝑖=1

≜ 𝑉  (F.8) 

with the same storage function definition as in the parallel connection case. 

More generally, consider a dynamical system with input 𝐮 and output 𝐲 defined by equa-

tions 

 𝐱 = 𝐟 𝐱 𝑡 ,𝐮 𝑡   (F.9) 
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 𝐲 𝑡 = 𝐡 𝐱 𝑡 ,𝐮 𝑡   (F.10) 

where 𝐟:ℝ𝑛 × ℝ𝑚  ℝ𝑛  is locally Lipschitz, 𝐡:ℝ𝑛 × ℝ𝑚  ℝ𝑚  is continuous, 𝐟 𝟎,𝟎 =

𝟎, 𝐡 𝟎,𝟎 = 𝟎. This system is said to be passive if there exists a continuously differenti-

able positive semidefinite function 𝑽 𝐱  (storage function), such that 

 𝐮T𝐲 ≥ 𝑽 =
𝝏𝑽

𝝏𝐱
𝐟 𝐱,𝐮  (F.11) 

One of the property of the passive system is that, if the storage function is positive defi-

nite, then the origin of 𝐱 = 𝐟 𝐱 𝑡 ,𝟎  is stable. The SDOF system discussed in this sec-

tion just belongs to this case. 
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Appendix G 

Simulation of White Noise 

White noise is one of the most widely used noise models in science and engineering. Un-

derstanding the properties of this noise model and its associated variants is important in 

theoretical and practical applications. The name “white” derives from the fact that its 

power spectral density function (PSD) is uniform everywhere, resembles the spectrum of 

the white light (as shown in Figure G.1). The discussion about the white noise begins 

with Wiener process (or Browian motion) 𝐵𝑡 . The definition of 𝐵𝑡  can be found in many 

standard text, and one important feature is that the path of 𝐵𝑡  is continuous but its time 

derivative does not exist in the sense of ordinary calculus. This rather “odd” property 

creates trouble for scientists and engineers because when writing the system equations as 

stochastic differetial equations (SDE), for example equation (2.63), the condition 

w 𝑡 ≜ 𝑑𝐵𝑡 𝑑𝑡  is desirable (for the reason will be mentioned later), but apparently does 

not exist. To accommodate this, a generalized derivative is defined as 

  𝑢 𝑠 w 𝑠 𝑑𝑠
𝑡

0

≜ 𝑢 𝑡 𝐵𝑡 𝑡 −  𝑢  𝑠 𝐵𝑡 𝑠 𝑑𝑡
𝑡

0

 (G.1) 

where 𝑢 𝑡  is any nonrandom smooth 𝐶1  function. The integal  𝑢 𝑠 w 𝑠 𝑑𝑠
𝑡

0
 is well 

defined because the integrand is the product of two continuous functions. With this defi-

nition, it can be shown that w 𝑡  is Gaussian and strongly stationary, since 

 𝔼 w 𝑡  = 0 and 𝑟 𝜏 = 𝔼 w 𝑡 + 𝜏 w 𝑡  ∝ 𝛿 𝜏  (G.2a,b) 

This outcome implies that w 𝑡  has expectation zero and autocorrelation proportional to 

Dirac delta 𝛿 𝑡 . By Wiener-Khintchine Theorem, suppose 𝑟 𝜏 = P𝛿 𝜏 , the PSD func-

tion 𝑆 𝑓  is given as 
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 𝑆 𝑓 =  𝑟 𝜏 𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏
+∞

−∞

= P (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (G.3) 

This clearly shows that w 𝑡  is a white Gaussian noise (WGN), as the PSD is constant 

over the entire frequency domain (see Figure G.1). However, white noise is not exclusive 

to Gaussian noise. A wide-sense stationary (or weak-sense stationary, WSS) stochastic 

process with probability distribution other than Gaussian, for example uniform distribu-

tion, can also be white noise if its PSD is constant over the entire frequency bandwidth. 

On the other hand, many “colors” can be used to classify the noise types by their corres-

ponding PSD distributions, such as blue, pink, red noises, etc. Among various types of 

noises, WGN is particularly important, not only because the power is constant over the 

frequency domain, but also due to the fact that any linear transformation preserves the 

Gaussianity. Moreover, WSS Gaussian stochastic processes with certain practically at-

tainable assumptions (mainly on how fast the autocorrelation function decays) can also 

guarantees the ergodicity of the processes, which is an essential property for numerical 

estimation of PSD. The discussion henceforth is concentrated on Gaussian noise. 

 

Figure G.1 PSD and autocorrelation functions of white noise 

As indicated in Figure G.1, the total power of the process is given by  
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 𝑟 0 =  𝑆 𝑓 𝑑𝑓
+∞

−∞

= P𝛿 0 = ∞ (G.4) 

Because there is no energy source provides infinite power, the white noise model is not 

realizable in practice. Therefore, another noise model --- band-limited white noise is pro-

posed. Band-limited white noise is a WSS stochastic process with constant PSD over a 

finite frequency bandwidth (within ±𝑓𝐵 in Figure G.2). According to Wiener-Khintchine 

Theorem, the corresponding autocorrelation function is given as 

 𝑟 𝜏 =  𝑆 𝑓 𝑒𝑖2𝜋𝑓𝜏𝑑𝑓
+∞

−∞

= 2P𝑓𝐵sinc 2𝑓𝐵𝜏  (G.5) 

where sinc 𝑥 = sin 𝜋𝑥  𝜋𝑥   indicates the points 1  2𝑓𝐵   apart are uncorrelated, and 

hence independent due to Gaussianity (see Figure G.2). This result inspires the numerical 

implementation of generating the band-limited white noise. 

 

Figure G.2 PSD and autocorrelation functions of band-limited white noise 

Using random number generator to generate a sequence of independent and identically 

distributed (i.i.d.) random numbers corresponding to a sampling period of 1  2𝑓𝐵  . Each 

random number has normal distribution of mean zero and variance expressed as 
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 𝑟 0 =  𝑆 𝑓 𝑑𝑓
+𝑓𝐵

−𝑓𝐵

= 2P𝑓𝐵 = P𝑓𝑠 (G.6) 

where 𝑓𝑠 = 2𝑓𝐵  is the sampling frequency. This is exactly how Simulink
®
 from Math-

Works
®
 generates the “Band-Limited White Noise” if one looks under the mask of the 

corresponding block set (literally). The estimated PSD of a generated sequence with 

sampling frequency 64 Hz is plotted against the theoretical value P = 10 in Figure G.3. 

The case above corresponds to the case in which the correlation time of the noise 

𝑡𝑐 = 1  2𝑓𝐵   is equal to the sampling period 𝑇 = 1 𝑓𝑠 . In more complicated cases, when 

𝑡𝑐 = 𝑛𝑐𝑇,𝑛𝑐 = 2,3,… the PSD of the generated white noise is no longer as depicted in 

Figure G.2. 

 

Figure G.3 PSD of generated band-limited white noise (only half bandwidth is shown) 

For the band-limited white noise shown in Figure G.4, assume the correlation time 𝑡𝑐  and 

PSD 𝑆𝑐 𝑓 = P of the underlying continuous noise are fixed. With the sampling frequen-

cy 𝑓𝐿 (𝑛𝑐 = 1), the same “flat” PSD as shown in Figure G.2 and Figure G.3 is obtained. 

However, with a higher sampling frequency 𝑓𝐻  (𝑛𝑐 = 𝑡𝑐𝑓𝐻 = 5), then the same value of 

the random sample is held constant for the duration of correlation time 𝑡𝑐 . This results in 

a sampled version of zero-order-hold (ZOH) of the original sequence when sampling un-
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der frequency 𝑓𝐿 (as shown in red color in Figure G.4). Now the PSDs of the continuous 

“analog” noise and the sampled noise are analyzed as follows. 

 

Figure G.4 Band-limited white noise with correlation time 𝑡𝑐  under different 𝑓𝑠 

For the analog noise signal, it can be considered as the generated uncorrelated random 

numbers (shown in Figure G.5) input to a continuous time ideal ZOH filter with the im-

pulse response h 𝑡  shown in Figure G.6. 

 

Figure G.5 Uncorrelated data series generated when 𝑡𝑐 = 1 𝑓𝑠   
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Denote the original underlying continuous noise signal as w𝑡 𝑡  and its sampled data se-

ries shown in Figure G.5 as w 𝑛 = w𝑡 𝑛𝑡𝑐 . The corresponding continuous time im-

pulse train is written as 

 w𝑠 𝑡 =  w 𝑛 𝛿 𝑡 − 𝑛𝑡𝑐 

+∞

𝑛=−∞

=  w𝑡 𝑛𝑡𝑐 𝛿 𝑡 − 𝑛𝑡𝑐 

+∞

𝑛=−∞

 (G.7) 

 

Figure G.6 Impulse response of ideal ZOH filter 

According to the Nyquist Sampling Theorem, the amplitude of the Fourier Transform 

(FT) of w𝑠 𝑡  is 1 𝑡𝑐  times the amplitude of the FT of w𝑡 𝑡 . Then the PSD of this im-

pulse train is 𝑆𝑠 𝑓 = P 𝑡𝑐
2 . The impulse response of the ZOH filter can be expressed as 

 h 𝑡 =  
1, 0 ≤ 𝑡 < 𝑡𝑐
0, otherwise

  (G.8) 

Using Fourier Transform (FT), the frequency response function H 𝑓  given as 

 H 𝑓 =  h 𝑡 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
+∞

0

= 𝑡𝑐sinc 𝑓𝑡𝑐 𝑒
−𝑖2𝜋𝑓𝑡𝑐 2  (G.9) 

Therefore, the PSD of the resulting ZOH noise can be written as 
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 𝑆 𝑓 =  H 𝑓  2𝑆𝑠 𝑓 = Psinc2 𝑓𝑡𝑐  (G.10) 

This equation is the PSD for the analog ZOH noise (shown in red in Figure G.4). 

For the noise sampled under 𝑓𝐻  (shown in green in Figure G.4), it can be considered as an 

expanded data series input to a “boxcar” filter with impulse response shown in Figure 

G.8. The expanded data series is obtained by interpolating zeros in between the original 

uncorrelated noise samples (see Figure G.7). It can be denoted as w𝑒 𝑛 ⋅ 𝑛𝑐 = w 𝑛 . Us-

ing the Discrete-Time Fourier Transform (DTFT), the PSD estimate of w 𝑛  can be writ-

ten as (chosen 𝑀 data points) 

 𝑃w 𝜔 =
  w 𝑛 𝑀−1

𝑛=0 𝑒−𝑖𝜔𝑛  
2

𝑀
 (G.11) 

and the PSD estimate of w𝑒 𝑛  is given as (chosen 𝑀𝑛𝑐  data points) 

 𝑃𝑒 𝜔 =
  w𝑒 𝑛 

𝑀𝑛𝑐−1
𝑛=0 𝑒−𝑖𝜔𝑛  

2

𝑀𝑛𝑐
=
  w 𝑘 𝑀−1

𝑘=0 𝑒−𝑖𝜔𝑘 𝑛𝑐  
2

𝑀𝑛𝑐
=
𝑃w 𝜔𝑛𝑐 

𝑛𝑐
 (G.12) 

 

Figure G.7 Expanded data series w𝑒  𝑛  
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 h 𝑛 =  
1, 𝑛 = 0,1,… ,𝑛𝑐 − 1
0,                        otherwise

  (G.13) 

The corresponding frequency response function is given as 

 H 𝑒𝑖𝜔  =  h 𝑛 𝑒−𝑖𝜔𝑛
+∞

𝑛=−∞

=
sin  

𝜔𝑛𝑐
2  

sin  
𝜔
2 

𝑒−𝑖𝜔 𝑛𝑐−1 2  (G.14) 

 

Figure G.8 Impulse response of discrete “boxcar” filter 

Then input the expanded noise w𝑒  𝑛  into the “boxcar” filter, the PSD of the resulting 

noise is given as 

 𝑃 𝜔 =  H 𝑒𝑖𝜔   
2
𝑃𝑒 𝜔 =

sin2  
𝜔𝑛𝑐

2  

sin2  
𝜔
2 

𝑃𝑒 𝜔  (G.15) 

Substituting equation (G.12) into equation (G.15) and considering the conversion of PSD 

from discrete time to the continuous time, the continuous time PSD estimate of the output 

noise is given as (𝜔 = 2𝜋𝑓 𝑡𝑐 𝑛𝑐 ) 
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𝑆 𝑓 =
sin2 𝜋𝑓𝑡𝑐 

sin2 𝜋𝑓𝑡𝑐 𝑛𝑐  

𝑡𝑐
𝑛𝑐
𝑃𝑒  

2𝜋𝑓𝑡𝑐
𝑛𝑐

  

=
sin2 𝜋𝑓𝑡𝑐 

sin2 𝜋𝑓𝑡𝑐 𝑛𝑐  

𝑡𝑐𝑃w 2𝜋𝑓𝑡𝑐 

𝑛𝑐2
 

=
sin2 𝜋𝑓𝑡𝑐 

sin2 𝜋𝑓𝑡𝑐 𝑛𝑐  

𝑆𝑐 𝑓 

𝑛𝑐2
=

sin2 𝜋𝑓𝑡𝑐 

sin2 𝜋𝑓𝑡𝑐 𝑛𝑐  

P

𝑛𝑐2
 

(G.16) 

 

Figure G.9 PSDs of band-limited white noises with fixed 𝑡𝑐  different sampling frequency 

 

Figure G.10 Zoom-in view of Figure G.9 
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A close inspection to equations (G.10) and (G.16) shows that the corresponding PSDs are 

not the same. To better examine the ZOH effect with correlation time 𝑡𝑐 , the band-limited 

white noises generated with different sampling frequencies are compared. In Figure G.9, 

a band-limited white noise with correlation time 𝑡𝑐 = 1 64  sec and PSD P = 10 

Mag
2
/Hz is sampled with sampling frequencies 512 Hz and 2048 Hz. The solid lines in 

red and green indicate the PSDs of the two sampled noises calculated by equation (G.16). 

They match well with the numerical estimates of the corresponding PSDs. The solid line 

in gray indicates the PSD of the analog noise obtained by equation (G.10). It is observed 

that, the PSD is no longer “flat” over the frequency domain, but rather ripples with lobe 

bandwidth 1 𝑡𝑐 . A zoom-in view (Figure G.10) shows that, as the sampling frequency 

increases, the PSD of the generated sampled noise approaches to the one of the analog 

ZOH noise. Therefore, to achieve the desired effect of a “flat” spectrum as a white noise, 

a 𝑡𝑐  that is small enough need to be chosen. A practical rule is 1 𝑡𝑐  is 100 times the larg-

est system natural frequency under consideration 𝑓𝑚𝑎𝑥 , i.e. 

 𝑡𝑐 ≤
1

100 ⋅ 𝑓𝑚𝑎𝑥
 (G.17) 
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